研究課題/領域番号 |
20K08021
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分52040:放射線科学関連
|
研究機関 | 大阪大学 |
研究代表者 |
高橋 洋人 大阪大学, 医学部附属病院, 講師 (20617352)
|
研究分担者 |
鈴木 裕紀 大阪大学, 大学院医学系研究科, 特任助教(常勤) (20845599)
|
研究期間 (年度) |
2020-04-01 – 2025-03-31
|
研究課題ステータス |
交付 (2022年度)
|
配分額 *注記 |
3,640千円 (直接経費: 2,800千円、間接経費: 840千円)
2024年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2023年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2022年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2021年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2020年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
|
キーワード | DAT SPECT / parkinson disease / AI / deep learning / シヌクレノパチー |
研究開始時の研究の概要 |
シヌクレノパチーは黒質線条体領域のドパミン神経変性が病態としてあり、黒質領域のドパミン細胞変性を評価する神経メラニンMRI画像や線条体領域のドパミン細胞変性を評価するドパミントランスポーター(dopamine transporter: 以下DAT)イメージングなど様々な画像評価手法を用いた研究が行われている。特にDATイメージングは疾患関連の症状に鋭敏で機能評価に有用と考えられている。人工知能による機械学習を活用したDATイメージング診断システムでシヌクレノパチー発症前段階の微細な神経変性をとらえ、その発症予測への臨床応用を検討する。
|
研究実績の概要 |
DAT-SPCET画像はパーキンソン病(以下、PD)への診断有用性が言われている。この画像は運動機能を反映しているとされパーキンソン病に関連する運動機能の低下を描出することができ、すでに臨床でも使用されている。 研究者はパーキンソン病に関するイメージング研究を長く行っており、DAT-SPCET画像を用いた研究levelでの定量的な診断有用性についても報告している。 これまでの研究にてDAT-SPCETデータの収集と蓄積をおこない、これを用いた既存の機械学習システムでの有用性の確認はできている。とくに非PD対象とPD患者の分類では高い精度をもって分類、診断することができている。またさらにPDの前駆病態とされるレム睡眠時行動異常症の評価や、PD患者内での早期、あるいは進行期といった病期ごとの分類についても検討し、その有用性の研究と報告もおこなっている。 本研究では主に視覚的な評価が行われている臨床での診断向上を目指し、人工知能の画像の学習にて、既存の診断能の向上を検討している。本研究について現在は、人工知能の学習システムの見直しにて、さらにその診断精度の向上を目指している。 具体的には、オーギュメンテーションなどを用いた学習データの増加、あるいは人工知能の学習システムシステムそのものの工夫を行っている。学習システムは汎用性が重要と考え、パーキンソン病に係る様々な画像データ、例えば神経メラニン画像を使用してみての成績評価などを平行して行い、これらについても結果を出しており、人工知能関連の研究学会での報告が予定されている。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
DAT SPECTなどの研究に必要な画像はすでに蓄積している。 現在はこれを用いた人工知能のより精度の高い学習システムの確立を目指し、診断精度の向上へつなげようとしている。
|
今後の研究の推進方策 |
これまでの研究にてDAT-SPCETデータの収集と蓄積をおこない、これを用いた既存の機械学習システムでの有用性の確認はできている。 現在は、人工知能の学習システムの見直しにて、その診断精度の向上を目指している。
|