研究課題/領域番号 |
20K12701
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分90130:医用システム関連
|
研究機関 | 沖縄科学技術大学院大学 |
研究代表者 |
KOTSIFAKI Domna 沖縄科学技術大学院大学, 量子技術のための光・物質相互作用ユニット, 客員研究員 (70834117)
|
研究期間 (年度) |
2020-04-01 – 2024-03-31
|
研究課題ステータス |
完了 (2023年度)
|
配分額 *注記 |
4,030千円 (直接経費: 3,100千円、間接経費: 930千円)
2022年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2021年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2020年度: 1,820千円 (直接経費: 1,400千円、間接経費: 420千円)
|
キーワード | Raman Spectroscopy / Nano-apertures / Metallic devices / Bacteria / Plasmonics / Optical Tweesers / Optical Tweezers / Nanoholes / Convection effects / phototoxicity / Optical trapping / Biomedicine / Metamaterials |
研究開始時の研究の概要 |
The interest of single-bacterium analysis has recently gained significant attention.In this proposal, the analysis and monitoring of antibiotic susceptibility at the single-bacterium level, in real-time, will be investigated via a novel platform named Electro-Nanohole Tweezers (ENT). I envision that ENT will be a high potential candidate to supplement or replace existing time-consuming methods such as antimicrobial resistance tests and will help the study to mitigate the challenge of drug resistance in clinical microbiology.
|
研究実績の概要 |
By employing the unique electromagnetic properties of metamaterials, this year I focused on integrating Fano-resonant metamolecules to enhance Raman scattering signals from bacterial components. By exploiting off-resonance laser excitation and local immobilization of microorganisms on metamaterial surfaces, I have overcome existing challenges associated with weak Raman signals and photodamage effects, enabling robust detection even in complex liquid matrices. This part of the project involved the design, fabrication, and optimization of Fano-enhanced Raman scattering platforms tailored for microbial detection. Experimental studies were conducted using Escherichia coli as a model microorganism, with Raman signatures recorded at various growth phases. I have cultured two different solutions with bacteria in mid-exponential phase and stationary phase. The time-dependent FERS signal analyzed to understand the dynamics of bacterial biochemical composition and its correlation with growth stages. Additionally, the platform's performance was validated using diverse microbial strains and real-world liquid samples to assess its suitability for large-scale applications. The results of this study have been published in Biomedical Optics Express.
|