研究課題/領域番号 |
20K15155
|
研究種目 |
若手研究
|
配分区分 | 基金 |
審査区分 |
小区分29010:応用物性関連
|
研究機関 | 東北大学 |
研究代表者 |
DUTTAGUPTA SAMIK 東北大学, 先端スピントロニクス研究開発センター, 助教 (30807657)
|
研究期間 (年度) |
2020-04-01 – 2023-03-31
|
研究課題ステータス |
中途終了 (2021年度)
|
配分額 *注記 |
4,160千円 (直接経費: 3,200千円、間接経費: 960千円)
2023年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2022年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2021年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2020年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
|
キーワード | Antiferromagnet / Topology / Weyl semimetal / AFM Spintronics / AFM spintronics / Weyl semimetals / Band structure topology / Non collinear |
研究開始時の研究の概要 |
The realization of high-speed and low-power architectures is a crucial challenge for high-throughput computing paradigms. This project aims at control and manipulation of topological non-collinear antiferromagnet by charge or spin currents for ultra-fast, dissipation-less spintronic devices.
|
研究実績の概要 |
The concerted effort of relativistic spin-orbit interaction, electronic band topology and magnetic order in antiferromagnetic Weyl semimetals (WSM-AFMs) manifests itself in novel properties, crucial for development of antiferromagnetic spintronics. We quantified magnetotransport properties of polycrystalline and epitaxial WSM-AFM/heavy-metal structures which revealed signatures of chiral anomaly in condensed matter systems. We utilized anomalous Nernst effect for different crystallographic orientations (C and M-plane) of the epitaxial structure. Our observations show an electronic route towards characterization of topological nature of electronic bands in Weyl semimetals.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
1: 当初の計画以上に進展している
理由
Our current research work deals with the interplay of relativistic spin-orbit interaction and non-collinear antiferromagnetic order leading to novel spin-dependent topological magnetoresistive effects and corresponds to the first objective of the proposed work plan. Our present experimental results supported by theoretical models have provided significant insights into the quantification of the band structure topology along different crystallographic axes, antiferromagnet and heavy-metal (HM) underlayer thickness in antiferromagnetic Weyl semimetal/HM structures. Currently, we are investigating new routes towards control of the topological properties for the realization of high-performance antiferromagnetic spintronic devices.
|
今後の研究の推進方策 |
The proposed work can be divided into three stages: (1) quantification and control of the topological properties in non-collinear Weyl semimetal antiferromagnet (WSM-AFM), (2) current-induced control of WSM-AFM spin structures, and (3) realization and current-induced control of WSM-AFM spin textures. At this stage, our results enable electronic quantification of the topological properties in an antiferromagnet Weyl semimetal heterostructure. Subsequent investigations concern current-induced control of WSM-AFM spin structures for development of next-generation antiferromagnetic spintronic devices.
|