研究課題/領域番号 |
20K15892
|
研究種目 |
若手研究
|
配分区分 | 基金 |
審査区分 |
小区分46010:神経科学一般関連
|
研究機関 | 東京大学 |
研究代表者 |
柏木 有太郎 東京大学, 大学院医学系研究科(医学部), 助教 (90840893)
|
研究期間 (年度) |
2020-04-01 – 2024-03-31
|
研究課題ステータス |
交付 (2022年度)
|
配分額 *注記 |
3,250千円 (直接経費: 2,500千円、間接経費: 750千円)
2023年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2022年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2021年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2020年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
|
キーワード | シナプス / 超解像顕微鏡 / 神経細胞 / 神経科学 / イメージング / 細胞生物学 / 超解像技術 |
研究開始時の研究の概要 |
本研究では超解像顕微鏡によるスパインの微細形態解析技術を基礎として、シナプスの構成要素であるスパインと軸索末端を同時かつ詳細に観察することで、可塑的刺激に伴ったシナプスの形態変化とその分子基盤を検証する。さらにこの技術を脳組織に応用し生きた脳により近い環境でシナプスを精細に観察する基盤技術の確立を目指す。これらの取り組みにより記憶・学習といった脳機能の理解を進めることを目標とする。
|
研究実績の概要 |
興奮性シナプス後部構造であるスパインは、記憶・学習といった可塑的刺激に伴って変化する脳の記憶素子であると考えられている。シナプスの機能を調べるためにスパインの形態イメージングが行われるが、スパインはミクロンスケールの小さな突起でありその大きさや構造を正確に捉えることは従来の光学顕微鏡の分解能では難しい。本年度は、特にスパインの微細動態とシナプスの安定性との関わりを検証するために、特に生きた動物に適応する技術開発に取り組み、これまで確立してきた超解像イメージング技術を発展させて大きく以下の2つの基盤技術を確立した。
1. in vivo 二光子顕微鏡観察を行った後で同一シナプスを固定後に超解像イメージングする手法の確立 これまでの二光子-超解像相関顕微鏡観察手法では、対物レンズの収差や作動距離の問題で脳表からごく浅い領域でしか十分な分解能の顕微鏡観察が難しかった。本年度は300μm以上の厚い標本を膨張させる実験条件を最適化し、長作動距離の対物レンズと組み合わせることで、皮質2/3層の錐体細胞の頂上樹状突起から規定樹状突起までを高解像度で観察する条件を確立した。この手法とin vivo二光子顕微鏡観察を組み合わせ、生きた動物で撮影した樹状突起を膨張した組織標本中で再同定することに成功した。 2. エングラム細胞のスパインシナプスを超解像イメージングする手法の確立 本年度は前述した厚い標本を膨張させる技術、また前年度までに確立したエングラム細胞とその細胞形態を標識する技術を組み合わせを実施した。これにより、非エングラム細胞とエングラム細胞を同定しつつ、それぞれの細胞の100以上のスパインシナプスを定量的な解析を行った。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
前年度までに確立した膨張顕微鏡手法をさらに厚い組織標本へ適応した。昨年までより3倍以上厚い標本を膨張させることが出来ており、現在は対物レンズの作動距離の限界2mm程度まで膨張させた組織標本を観察している。 本年度で達成した実験条件を用い、in vivo二光子-膨張顕微鏡相関イメージング手法を確立した。また昨年度までに確立したエングラム細胞の標識技術と錐体細胞の標識技術を膨張顕微鏡手法と組み合わせることで、ノンエングラム細胞とエングラム細胞のスパインを100個以上定量的に解析することが出来た。これらの結果から、研究はおおむね順調に進展しているとした。
|
今後の研究の推進方策 |
記憶で活性化される神経細胞同士が形成するシナプスを解析するために、mmスケールの広視野イメージングとnmスケールの超解像イメージングを両立させる必要がある。膨張顕微鏡の拡大率を2~20倍まで検討し、撮像に最適な対物レンズを選定することで、mmスケールのイメージングとnmのイメージングを両立させる最適条件を見出す。 記憶に関わる神経回路可視化するために軸索を長距離にわたって追跡する技術を開発し、その投射先のシナプスを観察する実験条件の確立を目指す。また、活性化されたシナプスを同定する技術の開発に取り組み、次にその技術の個体への応用を目指す。これまで確立した超解像イメージング技術と、新しく開発する回路トレース技術またシナプス標識技術を組み合わせることで、記憶で活性化された神経回路のシナプスの可視化に取り組む。
|