研究課題/領域番号 |
21J10272
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
審査区分 |
小区分21050:電気電子材料工学関連
|
研究機関 | 東京大学 |
研究代表者 |
隅田 圭 東京大学, 工学系研究科, 特別研究員(DC2)
|
研究期間 (年度) |
2021-04-28 – 2023-03-31
|
研究課題ステータス |
完了 (2022年度)
|
配分額 *注記 |
1,500千円 (直接経費: 1,500千円)
2022年度: 700千円 (直接経費: 700千円)
2021年度: 800千円 (直接経費: 800千円)
|
キーワード | CMOS / MOSFET / 移動度 / 表面ラフネス散乱 / Si / Ge / InAs / クライオCMOS / 極薄膜チャネル / 界面準位 |
研究開始時の研究の概要 |
高度に発達したSi集積回路、並びにSi光回路のプラットフォーム上へ、異なる材料のIII-V族半導体を転写する技術を適用することで、3次元的に集積されたIII-V族半導体素子によってSiのみでは実現不可能な新たな回路機能の創生・及び素子集積度の向上を目指す. 具体的にはInAsが薄膜において最も電子伝導が有利な構造を理論・実験的に明らかにし, これをSiトランジスタ上へと集積することによって3次元集積CMOSの実現を目指す. さらにSi導波路とInAs受光器を組み合わせ, 出力信号をInAsトランジスタで直接増幅することで, 高感度かつ高速な受光システムの創生を目指す.
|
研究実績の概要 |
将来のロジックCMOSに採用されナノシート世代のチャネル構造において、支配的な散乱機構である表面ラフネス散乱の定量的理解について取り組んだ。まず、表面ラフネス散乱の従来モデルの課題であった定量性を改善するべく、散乱の強烈な非線形性を考慮することの出来るモデルを新たに提案した。我々の提案モデルによって、TEM等と整合する現実的なパラメータでSi, Ge, InAs nMOSFETの移動度が説明出来ることを実証した。本提案モデルでは明らかではなかった、MOSFETの移動度の実効電界に対するユニバーサリティが成立する起源や、4KのクライオMOSFETの移動度に特有の遮蔽効果とtail statesが与える影響を明らかにし、Si MOSFETの移動度の定量的理解に大幅に貢献した。 さらに、新たに提案した定量性に優れる表面ラフネス散乱のモデルを用いることで、様々な材料と面方位を組み合わせた極薄膜チャネル中の電子移動度を計算して比較することにより、将来のCMOS応用上重要な2-3 nmの膜厚において高い移動度の得られるチャネル構造が、異方的な電子谷を有する(111) InAsや(111) Geであることを明らかにした。本成果は、当研究グループが取り組んできた極薄膜InAsやGeチャネルの移動度の定量的理解を与えただけでなく、究極的なスケーリングの為のチャネル候補と大きく注目される2次元材料に対し、従来の3次元半導体が2 nmという極薄膜においても2次元材料よりも高い移動度が得られることを示したことと、今後のCMOSにおける極薄膜チャネル設計指針を明確化した、深い学術的意義を有する研究内容と言える。
|
現在までの達成度 (段落) |
令和4年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和4年度が最終年度であるため、記入しない。
|