研究開始時の研究の概要 |
In order to develop a combined process with aerobic granular sludge (AGS) and photocatalytic technology for the treatment of petroleum refinery wastewater (PRW). Firstly, the photocatalytic performance and mechanism of the catalysts will be investigated under solar light irradiation. Secondly, a solar photocatalytic thin film continuous system for water purification will be developed using transparent glass tubes as carriers and polyethylene glycol as binder agent. Finally, the combined system with AGS and photocatalytic technology for the treatment of PRW will be constructed and evaluated.
|
研究実績の概要 |
In this fiscal year, the study was carried out through the following key points: (1) Develop Z-scheme g-C3N4-Ag/Ag2O/BiPO4/Bi2WO6 (CN-Ag/P/BWO) for water purification; (2) Investigate the disinfection activity for Enterococcus sp.; (3) Clarify the disinfection mechanism for Enterococcus sp.; (4) Evaluate the practicability to environmental water disinfection; (5) Reveal the cyclic ability of CN-Ag/P/BWO immobilized system; (6) Explore the degradation activity of CN-Ag/P/BWO for organics (phenol/tetracycline). The results showed that Z-scheme CN-Ag/P/BWO was successfully constructed with remarkable disinfection performance for Enterococcus sp.. The disinfection mechanism demonstrated the major roles of photogenerated holes, superoxide radicals and hydroxyl radicals. The deteriorated antioxidant system was responsible for the damaged cell membrane and energy system, further leading to the leakage of intracellular components and final collapse of bacteria. CN-Ag/P/BWO exhibited high practicability to environmental water disinfection. Besides, the immobilized CN-Ag/P/BWO system showed high activity for Enterococcus sp. disinfection during five cycles. Although, CN-Ag/P/BWO exhibited poor performance for phenol degradation due to its stable π-conjugated structure, 97% of tetracycline was removed after 60-min treatment, indicating its high photocatalytic activity and prospect for antibiotics degradation. Therefore, this work provides a high-efficiency technology for water purification, contributing to the improvement of public health and environment.
|