• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

逐次型セマンティックセグメンテーション学習

研究課題

研究課題/領域番号 21J13152
研究種目

特別研究員奨励費

配分区分補助金
応募区分国内
審査区分 小区分61010:知覚情報処理関連
研究機関東京大学

研究代表者

ZHANG KAIPENG  東京大学, 情報理工学系研究科, 特別研究員(DC2)

研究期間 (年度) 2021-04-28 – 2023-03-31
研究課題ステータス 完了 (2021年度)
配分額 *注記
1,500千円 (直接経費: 1,500千円)
2021年度: 800千円 (直接経費: 800千円)
キーワードSemantic segmentation / Neural network / Few-shot learning / Active learning / Neural routing by memory
研究開始時の研究の概要

This research aims to make the computer smarter in semantic segmentation by more and more interaction with humans.
First, we can provide few new data that contain new categories to make the computer able to segment the image regions of new categories. In a simple case, given only one image with its annotation for bananas, the computer able to segment the regions of bananas.
Second, we aim to make the computer able to discover valuable data during running. In this way, the computer can significantly improve its performance by asking humans to annotate few but valuable data.

研究実績の概要

This research aims to improve semantic segmentation through two solutions, including the passive and active solutions. The passive solution provides the computer with a few new annotated data for new categories to make the computer able to segment the image regions of new categories. The active solution makes the computer able to discover valuable data during running and use them to improve the model.
In 2021, we completed the passive solution by proposing a method named Segmentation by Dynamic Prototype (SDP). SDP does segmentation by searching each pixel's features nearest prototype in feature space. A prototype is a representative feature of a class. During running, it is dynamically constructed by a few new annotated data and old data. We submitted this work to a journal, and it is under review so far.
As for the active solution, we proposed a continual active learning method for semantic segmentation. It can continually select informative images to annotate and feed them to the model to improve accuracies. But the improvement is not satisfactory so far, and we will do more research in the next.
Besides, during the research, we found large redundant storage and RAM resources in cloud servers. Thus, we proposed a method named Neural Routing by Memory, which utilizes the redundant resources to improve accuracies. The work was accepted by NeurIPS 2021.

現在までの達成度 (段落)

翌年度、交付申請を辞退するため、記入しない。

今後の研究の推進方策

翌年度、交付申請を辞退するため、記入しない。

報告書

(1件)
  • 2021 実績報告書
  • 研究成果

    (1件)

すべて 2021

すべて 学会発表 (1件) (うち国際学会 1件)

  • [学会発表] Neural Routing by Memory2021

    • 著者名/発表者名
      Zhang, Kaipeng and Li, Zhenqiang and Li, Zhifeng and Liu, Wei and Sato, Yoichi
    • 学会等名
      Advances in Neural Information Processing Systems 2021
    • 関連する報告書
      2021 実績報告書
    • 国際学会

URL: 

公開日: 2021-05-27   更新日: 2024-03-26  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi