研究課題/領域番号 |
21K04486
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分24010:航空宇宙工学関連
|
研究機関 | 国立研究開発法人宇宙航空研究開発機構 |
研究代表者 |
成岡 優 国立研究開発法人宇宙航空研究開発機構, 航空技術部門, 主任研究開発員 (10649073)
|
研究分担者 |
二宮 哲次郎 国立研究開発法人宇宙航空研究開発機構, 航空技術部門, 主幹研究開発員 (80358647)
|
研究期間 (年度) |
2021-04-01 – 2024-03-31
|
研究課題ステータス |
交付 (2022年度)
|
配分額 *注記 |
3,510千円 (直接経費: 2,700千円、間接経費: 810千円)
2023年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2022年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2021年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
|
キーワード | 飛行特性 / モデル化 / ベイズ推定 / 不確かさ / スチューデントT分布 / システム同定 / 検定 / 飛行試験 / 統計 |
研究開始時の研究の概要 |
飛行中に航空機が得る揚力や操縦の応答等を表す飛行特性は、速度による空気力変化や機械的遅れといった要素を積み上げて予測されるが、現在の技術では予測は完全ではない。また、予測を修正するために実施されるシステム同定、すなわち飛行中の対気速度、加速度、操舵量といったデータから飛行特性を推定する方法にも問題がある。特に、精度確保には飛行データの事前選別が必須で作業が煩雑である、あるいは、結果が予測要素ごとでないため予測の改善に役立たない。そこで、精度向上に有効なデータを自動判定し、かつ、予測性能の向上に役立つ形で結果を出力することが可能な、新たな飛行特性のシステム同定方法を本研究で確立する。
|
研究実績の概要 |
本研究は、航空機の飛行特性を高精度にモデル化しようとするものであり、かつ、得られたモデルが流体力学による計算や風洞試といった他の予測方法で得られるモデルと比較が容易なよう、モデル構造に制約を設けた形で推定を行おうとしている。そのため入力となる飛行データをモデルにあわせて統計的に選別する方法を新たに構築しようとしており、昨年度は入力となる同定用データと仮定するモデル構造の関係性が重要であることを突き止めている。 2年度目にあたる本年度は、昨年度成果を発展させ、その関係性を定量的に表現可能な指標について統計的見地から探求を行った。結果、スチューデントT分布の自由度がその役割を発揮することを明らかにした。この方法ではモデル構造として一般的な正規分布を仮定するのではなく、自由度によって分布の裾野の幅を制御可能なスチューデントT分布を仮定する。さらに前述の自由度をモデルパラメータと同時にベイズ推定の枠組で推定することで、入力データとモデル構造の一致度を定量的に示せるようになった。そして推定された自由度が低いことはデータとモデル構造の一致度が低いことを意味し、データの再選別、あるいはモデル構造の再検討を行うことで高精度なモデル化を達成できる見通しが得られた。これらはピッチ運動時のデータに適用する形で提案方法の効果を確かめ、後述の国際学会ICAS2022で発表を行った。 また、昨年度投稿した空力係数の不確かさの要因分析の論文が受理・掲載されている。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
3: やや遅れている
理由
本研究は①予測に用いられる理論・経験則を構造にもつ飛行特性モデル、②モデル出力と飛行データから、望ましい飛行データを弁別する機構、③モデルのパラメータをより確からしいものに更新する機構の3要素に分解して研究を進めている。2年度目にあたる本年度は初年度進捗が全くなかった②について進捗が十分あったが、当初試行を予定していた統計および機械学習の2つの方法のうち前者のみの検討となった。そこで『やや遅れている』を選択した。
|
今後の研究の推進方策 |
次年度(最終年度となる予定)においては進捗状況で述べた3要素のうち、引き続き②のうち機械学習を中心に検討する。すでに得られている統計的方法との比較を行いつつ、より良い方法について探求する計画である。そして①・③と融合する形で研究を進める予定である。さらに得られている成果について論文化も進める予定である。
|