研究課題/領域番号 |
21K04846
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分28040:ナノバイオサイエンス関連
|
研究機関 | 北海道大学 |
研究代表者 |
コビル アリフ 北海道大学, 理学研究院, 特任講師 (10724867)
|
研究期間 (年度) |
2021-04-01 – 2023-03-31
|
研究課題ステータス |
中途終了 (2022年度)
|
配分額 *注記 |
4,160千円 (直接経費: 3,200千円、間接経費: 960千円)
2023年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2022年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2021年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
|
キーワード | Artificial muscles / Biomolecular motors |
研究開始時の研究の概要 |
The purpose is mimic nature’s strategy and create artificial muscles in a biomimetic approach. Recently, I have created artificial sarcomere that exhibited dynamic global contraction. Here, I will expand my research to create an artificial muscle. I will demonstrate dynamic relaxation of the artificial sarcomere after contraction, control the kinetics of contraction and relaxation of artificial sarcomere and control the hierarchical organization of the sarcomere networks in three dimensions to create artificial muscles.
|
研究実績の概要 |
This project was aimed at fabricating artificial muscles through fusion of biomolecular motors (microtubules, kinesin) and DNA origami nanostructures. The construction of artificial muscles consists of two phases: dynamic contraction of a global microtubule network and subsequent relaxation of the contracted network. The dynamic contraction of a global microtubule network has been achieved successfully by using microtubules, six helix bundle DNA origami nanostructures, and tetrameric kinesin linkers. Moreover, by reducing the number of kinesin motors interacting with microtubules from four to three, we are also able to slow down the kinetics of contraction of the global microtubule network significantly. However, relaxation of the contracted microtubule network has still remained a challenge. Use of a photocleavable linker DNA has facilitated relaxation of the contracted microtubule network to some extent. In future, further attempts are required to accelerate this relaxation process with an ability to repeatedly contract and relax similar to that of muscles in living organisms.
|