研究課題/領域番号 |
21K07591
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分52040:放射線科学関連
|
研究機関 | 東京大学 |
研究代表者 |
高尾 英正 東京大学, 医学部附属病院, 准教授 (10444093)
|
研究期間 (年度) |
2021-04-01 – 2024-03-31
|
研究課題ステータス |
交付 (2022年度)
|
配分額 *注記 |
4,160千円 (直接経費: 3,200千円、間接経費: 960千円)
2023年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2022年度: 2,080千円 (直接経費: 1,600千円、間接経費: 480千円)
2021年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
|
キーワード | アルツハイマー病 / MRI / PET / Radiomics |
研究開始時の研究の概要 |
本研究では、マルチモダリティ画像のRadiomics解析にて、アルツハイマー病を発症するリスクをより正確に予測可能とするシステムを開発するにあたり、以下の項目を実施する。 1)大規模データの取得 2)画像正規化、セグメンテーション、特徴量抽出の検討 3)Radiomicsモデルの構築および評価 4)システムの一般化の検討
|
研究実績の概要 |
Computed Tomography(CT)、Magnetic Resonance Imaging(MRI)、Positron Emission Tomography(PET)といった画像機器に加え、近年、計算機の発展が著しい。画像から多くの情報を抽出し、疾患の鑑別や予後予測といった個別化医療につなげようとする試みが現実味を帯びており、Radiomicsと呼ばれている。アルツハイマー病(Alzheimer's disease;AD)は、認知症の原因として最多であり、社会的・経済的な影響の強い、進行性かつ不可逆の神経変性疾患である。治療薬の開発には、認知症発症前の早期からの介入が不可欠であり、その対象を見つけ出すことが重要となっている。本研究では、アルツハイマー病治療薬の対象となりうる症例を正確に選別可能とするため、マルティモダリティ画像のRadiomicsにより、アルツハイマー病を発症するリスクを予測可能とするシステムを構築することを目的としている。はじめに、大規模画像データとして、The Alzheimer's Disease Neuroimaging Initiative(ADNI)、The Open Access Series of Imaging Studies(OASIS)といった公開データベースより、認知症発症前の縦断データを含む、多数の画像データの取得を行っている。また、マルティモダリティ画像から情報を抽出するため、画像正規化、セグメンテーション、特徴量抽出の検討をすすめている。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
おおよそ計画に沿って進められていると考えられる。
|
今後の研究の推進方策 |
マルチモダリティ画像から情報を抽出するため、画像正規化、セグメンテーション、特徴量抽出の検討をすすめ、Radiomicsモデルの構築および評価、システムの一般化の検討を行う。また、得られた結果は、随時とりまとめを行い、成果の発表を行う。
|