研究課題/領域番号 |
21K12010
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分61030:知能情報学関連
|
研究機関 | 北海道大学 (2023) 東京大学 (2021-2022) |
研究代表者 |
坂地 泰紀 北海道大学, 情報科学研究院, 准教授 (70722809)
|
研究期間 (年度) |
2021-04-01 – 2024-03-31
|
研究課題ステータス |
完了 (2023年度)
|
配分額 *注記 |
3,770千円 (直接経費: 2,900千円、間接経費: 870千円)
2023年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2022年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2021年度: 1,820千円 (直接経費: 1,400千円、間接経費: 420千円)
|
キーワード | 因果関係 / 因果関係インスタンス / 事前学習モデル / グラフニューラルネットワーク / テキストマイニング / 因果関係インスタンス認識 / 社会イベント分析 |
研究開始時の研究の概要 |
本研究の目的は、日本語・英語問わず、様々な金融テキストデータから、因果関係インスタンスを認識することで、社会イベント発生から個々の影響へのパスを明らかにすることである。これを達成するために、個々の因果関係インスタンスを認識する技術、抽出した因果関係インスタンスを用いて正確に因果チェーンを構築する技術の開発を行う。加えて、構築した因果チェーンを用いて国、地域、企業と異なる立場に基づくシナリオ分析可能なフレームワークを構築する。
|
研究成果の概要 |
タグ付けを行った決算短信データ、タグ付与済みの英語ロイターニュース記事、FinCausalのデータセットを用いて因果関係インスタンス抽出実験を行い、日英の文書から因果関係インスタンスを抽出できる手法の開発に取り組んだ。結果的に、BERTとグラフニューラルネットワークを組み合わせることで既存の手法よりも高い精度で因果関係インスタンスを抽出できる手法の開発に成功した。 最終的に、本研究は、「FinancialCausality Extraction based on Universal Dependencies and Clue Expressions」というタイトルで査読付き論文誌に採録された。
|
研究成果の学術的意義や社会的意義 |
因果関係インスタンス抽出手法を作成するために、BERTモデルの改良の検討も行った。その結果、金融特化のBERTモデルの構築ができ、こちらをhugging faceにて公開した。また、その過程で得られた他のBERTモデルも公開し、公開したBERTモデルは幅広く利用されている。 作成した因果関係インスタンス抽出手法は、日本語と英語のみならず、学習データさえ存在すれば、他の言語でも利用可能であることから、今後の研究発展が期待される。
|