研究課題/領域番号 |
21K15772
|
研究種目 |
若手研究
|
配分区分 | 基金 |
審査区分 |
小区分52040:放射線科学関連
|
研究機関 | 藤田医科大学 |
研究代表者 |
永田 紘之 藤田医科大学, 医学部, 助教 (70795608)
|
研究期間 (年度) |
2021-04-01 – 2024-03-31
|
研究課題ステータス |
交付 (2022年度)
|
配分額 *注記 |
4,680千円 (直接経費: 3,600千円、間接経費: 1,080千円)
2023年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2022年度: 390千円 (直接経費: 300千円、間接経費: 90千円)
2021年度: 3,640千円 (直接経費: 2,800千円、間接経費: 840千円)
|
キーワード | 超高精細CT / 肝細胞癌 / 肝動脈化学塞栓術 / vessel navigation system / AI / DLR |
研究開始時の研究の概要 |
2017年より臨床応用された超高精細CTはこれまでのCTと比較し高解像度のCT画像の撮像が可能であるが,理論上4倍の被曝線量が必要である。従って新たなAI技術を応用した再構成法の開発が急務である。また,現在血管造影と従来型CTを融合したTACE用AI併用Vessel Navigation Systemの開発が進められているが、微細血管の評価が困難であり,正確な栄養血管の同定が困難である。 本研究は超高精細造影CTの至適造影検査法と新たなAI技術を用いたCT画像再構成法とTACE用AI併用Vessel Navigation Systemの開発を行い,HCCの生存率を向上させることを目指す。
|
研究実績の概要 |
肝臓もしくは膵臓の悪性腫瘍の術前の腹部dynamic CTを、超高精細CTもしくはmultidetector CT(以下 MDCT)でおよそ80症例に施行した。超高精細CTの画像データは、0.25mm、0.5mm、1mmスライス厚で512×512マトリクス、1024×1024マトリクス、2048×2048マトリクスにて、MDCTの画像データは、0.5mm、1mmスライス厚で512×512マトリクスにて、画像再構成をした。画像再構成法はhybrid-type iterative reconstruction(以下 IR)、model-based IR(以下MBIR)、deep learning reconstruction(以下 DLR)を使用した。得られたCT画像の血管描出能を放射線診断専門医が評価し、hybrid-type IRやMBIRと比較した。またこれらの症例のうち、肝細胞癌(hepatocellular carcinoma: 以下 HCC)に対する肝動脈化学塞栓術(transcatheter arterial chemoembolization: 以下 TACE)を予定している症例については、得られたdynamic CTの画像データからartificial intelligence(以下 AI)併用vessel navigation system によるfeeding arteryの検出を試みた。また実際のTACE治療時のdigital subtraction angiography(以下 DSA)の画像データでも同様にfeeding arteryの検出を試みた。Feeding arteryの検出能はdynamic CTと比較し、DSAの画像データの方が優れていることが示唆された。これは肝動脈の描出能に起因するものというよりは、腫瘍の造影効果のタイミングやvessel navigation systemのAIのアルゴリズムが影響していると思われた。AIによるfeeding arteryの検出能に関する問題点はキヤノンメディカルシステムズ社にfeed backしている。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
およそ80症例のMDCTの腹部dynamic CTの画像データをhybrid-type IR、MBIR、DLRにて再構成した。腹部主幹動脈(腹部大動脈、腹腔動脈、固有肝動脈、左右肝動脈、胆嚢動脈、背側膵動脈)について、それぞれ関心領域を設定し、CT値、signal-to-noise ratio(以下 SNR)、contrast-to-noise ratio(以下 CNR)を測定した。胆嚢動脈を除く全ての動脈において、DLRのSNRsとCNRsは、hybrid-type IRと比較し有意に高かった。また腹部大動脈と腹腔動脈について、DLRのSNRsとCNRsはMBIRと比較し有意に高かった。放射線科診断専門医による腹部主幹動脈の描出能の評価において、maximum intensity projection(以下 MIP)での全体像では、DLR、MBIRはhybrid-type IRと比較し有意に高値であった。また左右肝動脈と胆嚢動脈の描出能は、DLR、MBIRはhybrid-type IRより有意に高かった。これらの結果より腹部主幹動脈の描出能についてはDLRによる画像再構成が有用であることが示唆された。この結果は2022年度に北米放射線学会(The Radiological Society of North America)で報告した。 TACEを施行した症例については、超高精細CTのdynamic CTの画像データとDSAの画像データの両者で、AI併用vessel navigation systemを使用し、feeding arteryの検出を試みたが、DSAの画像データでの結果の方が良好であった。これはdynamic CTでの腫瘍の造影効果やfeeding arteryの造影効果の他、AIのアルゴリズムが大きく影響していると思われた。
|
今後の研究の推進方策 |
HCCに対する新たな免疫チェックポイント阻害薬および分子標的薬の登場により、TACE治療対象症例は減少傾向であるが、肝臓もしくは膵臓の悪性腫瘍の術前の腹部dynamic CTのデータを使用することで、当初予定していた腹部造影CTデータの症例数を確保することが可能である。また悪性腫瘍のみならず、肝血管腫や限局性結節性過形成、肝細胞腺腫などについても手術適応となる症例が存在するため、このような良性疾患を含めることでより多くのデータを収集することが可能である。またTACE施行時のDSAの画像データが不足することとなるが、TACE以外にも悪性腫瘍術前の血管塞栓術や肝動注リザーバー療法のために、カテーテルによる血管撮影を行う症例が存在するため、これら症例についても検討の余地がある。またCOVID-19の影響によりCT phantomの納入に遅れが生じたため、当院放射線部にある従来型のCT phantomにてUHR-CTデータを取得した。今後流体力学用のCT phantomなどを用いることで、腹部dynamic CTのプロトコールによる腹部主幹動脈の描出能の更なる向上を目指す。加えて画像データの拡大再構成や再構成間隔の最小化などを応用することで、vessel navigation systemのAIによるfeeding arteryの検出能の向上を目指す。AIのアルゴリズムについてもいくつか改良が必要であることが示唆されているため、問題点をキヤノンメディカルシステムズ社にfeed backし、AI自体の改良を行う必要がある。またTACEを施行した症例については、feeding arteryの同定能および同定率の解析のみならず、follow upの画像データから治療効果判定を行うことを目標とする。
|