• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

偏微分作用素環上の数式処理を用いた非線形システムの推定・制御器設計理論

研究課題

研究課題/領域番号 21K21285
研究種目

研究活動スタート支援

配分区分基金
審査区分 1001:情報科学、情報工学およびその関連分野
研究機関大阪大学

研究代表者

庵 智幸  大阪大学, 大学院情報科学研究科, 助教 (00908410)

研究期間 (年度) 2021-08-30 – 2024-03-31
研究課題ステータス 完了 (2023年度)
配分額 *注記
3,120千円 (直接経費: 2,400千円、間接経費: 720千円)
2022年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2021年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
キーワード非線形システム / Hamilton-Jacobi方程式 / 数式処理 / 代数的手法 / 偏微分方程式 / D加群 / 非線形制御 / 状態推定 / 偏微分作用素
研究開始時の研究の概要

実社会に存在する多くのシステムは複雑な非線形性を持つ.従来よりも高精度・高効率な制御を実現するためには,この非線形性を活かした推定・制御器の実現が必要不可欠である.しかしながら,非線形性を考慮した推定・制御器の設計には偏微分方程式の求解という困難が付きまとう.
本研究では,偏微分方程式の本質的な部分を抜き出した数学的概念であるD加群を用いて推定・制御器設計理論の構築を行う.D加群に対する数式処理という新たな視点・方法論を導入し,大域的な非線形性を考慮しつつも問題設定の細かい差異に左右されない見通しの良い設計理論の構築を目指す.

研究成果の概要

非線形システム制御理論において非常に重要な偏微分方程式であるHamilton-Jacobi方程式(HJ方程式)が,特定の条件のもとで,有限個のパラメータ決定問題に帰着できることを示した.また,このパラメータ決定問題が高々有限個の代数方程式で表現可能であることを示した.さらに,HJ方程式の近似解法である逐次ガラーキン法を微分・差分作用素の数式処理で効率化し,複雑な非線形関数の積分で表されるパラメータを高速に求めるアルゴリズムを提案した.

研究成果の学術的意義や社会的意義

非線形システム制御理論においてHamilton-Jacobi方程式(HJ方程式)は単なる安定化制御のみならず,非線形システムの最適制御,ロバスト制御などの基礎となる非常に重要な偏微分方程式である.本研究の成果は,解の存在条件などまだ未解明な部分は残るものの,このHJ方程式を代数方程式という非常に簡単に解けるクラスの問題にまで帰着させたという点で学術的に大きな意義がある.また,その計算が数式処理アルゴリズムとして実装できるという点も実用上非常に重要である.さらに,HJ方程式の既存の数値解法に数式処理を組み合わせることで計算の効率化が達成できた点についても,本研究のアプローチの有用性を示している.

報告書

(4件)
  • 2023 実績報告書   研究成果報告書 ( PDF )
  • 2022 実施状況報告書
  • 2021 実施状況報告書
  • 研究成果

    (6件)

すべて 2023 2022 2021

すべて 雑誌論文 (1件) (うち査読あり 1件、 オープンアクセス 1件) 学会発表 (5件) (うち国際学会 2件)

  • [雑誌論文] Nonlinear Bayesian filtering via holonomic gradient method with quasi moment generating function2022

    • 著者名/発表者名
      Iori Tomoyuki、Ohtsuka Toshiyuki
    • 雑誌名

      Asian Journal of Control

      巻: - 号: 4 ページ: 1-16

    • DOI

      10.1002/asjc.2970

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / オープンアクセス
  • [学会発表] Symbolic-numeric computation of integrals in successive Galerkin approximation of Hamilton-Jacobi-Bellma equation2023

    • 著者名/発表者名
      Tomoyuki Iori
    • 学会等名
      The 62nd IEEE Conference on Decision and Control (CDC 2023)
    • 関連する報告書
      2023 実績報告書
    • 国際学会
  • [学会発表] 最適制御によるホロノミック勾配法の積分経路設計2022

    • 著者名/発表者名
      庵智幸
    • 学会等名
      第65回自動制御連合講演会
    • 関連する報告書
      2022 実施状況報告書
  • [学会発表] ホロノミックなハミルトン関数に対するハミルトン・ヤコビ方程式の一解法2022

    • 著者名/発表者名
      庵智幸
    • 学会等名
      第9回計測自動制御学会制御部門マルチシンポジウム
    • 関連する報告書
      2021 実施状況報告書
  • [学会発表] ホロノミックなハミルトン関数に対するハミルトン・ヤコビ方程式の解法に関する一検討2021

    • 著者名/発表者名
      庵智幸
    • 学会等名
      第64回自動制御連合講演会
    • 関連する報告書
      2021 実施状況報告書
  • [学会発表] Bayesian filtering for nonlinear stochastic systems using holonomic gradient method with integral transform2021

    • 著者名/発表者名
      Tomoyuki Iori and Toshiyuki Ohtsuka
    • 学会等名
      The 60th IEEE Conference on Decision and Control
    • 関連する報告書
      2021 実施状況報告書
    • 国際学会

URL: 

公開日: 2021-10-22   更新日: 2025-01-30  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi