研究課題
若手研究(B)
代数曲線上確定特異点を持つ放物接続のモジュライ空間から基本群の表現のモジュライ空間へのリーマン・ヒルベルト射が固有射であることを証明し、その結果、モノドロミー保存変形が幾何学的パンルべ性を持つことを明快に示すことができた。この一連の研究は岩崎氏、齋藤氏との共同研究に始まるが、本研究課題において著しい一般化を行い、研究の集大成を得ることができた。この研究結果により、古典的に知られているパンルべ第6方程式をモジュライ空間の幾何を用いて明快に理解することができた。
すべて 2013 2012 2011 2010
すべて 雑誌論文 (11件) (うち査読あり 6件) 学会発表 (4件) (うち招待講演 3件)
Kyoto J. Math
巻: 53, no. 2 ページ: 433-482
Sūgaku
巻: 65, no.2 ページ: 160-173
J. Algebraic Geom
巻: 22, no.3 ページ: 407-480
120005296011
Journal of Algebraic Geometry
巻: 22 no. 3
Kyoto Journal of Mathematics
巻: 53 no. 2
数学
巻: 65巻第2号
10031177310
巻: 未定
Adv. Math
巻: 227, no.4 ページ: 1399-1412
Advances in Mathematics
巻: 227 ページ: 1399-1412
J. Math. Soc. Japan
巻: 62, no.2 ページ: 395-429
10026999083
J.Math.Soc.Japan
巻: Vol.62 ページ: 395-429