• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

局所 Langlands 対応の圏化に関する多角的研究

研究課題

研究課題/領域番号 22H00093
研究種目

基盤研究(A)

配分区分補助金
応募区分一般
審査区分 中区分11:代数学、幾何学およびその関連分野
研究機関東京大学

研究代表者

今井 直毅  東京大学, 大学院数理科学研究科, 准教授 (90597775)

研究分担者 Koskivirta Jean・Stefan  埼玉大学, 理工学研究科, 准教授 (00897613)
越川 皓永  京都大学, 数理解析研究所, 助教 (10791452)
跡部 発  京都大学, 理学研究科, 准教授 (50837284)
研究期間 (年度) 2022-04-01 – 2027-03-31
研究課題ステータス 交付 (2024年度)
配分額 *注記
41,860千円 (直接経費: 32,200千円、間接経費: 9,660千円)
2025年度: 9,230千円 (直接経費: 7,100千円、間接経費: 2,130千円)
2024年度: 8,580千円 (直接経費: 6,600千円、間接経費: 1,980千円)
2023年度: 9,230千円 (直接経費: 7,100千円、間接経費: 2,130千円)
2022年度: 6,240千円 (直接経費: 4,800千円、間接経費: 1,440千円)
キーワード局所 Langlands 対応 / Langlands 対応
研究開始時の研究の概要

近年 Fargues--Scholze によって局所 Langlands 対応の圏化が定式化された.本研究の一つの目的は,局所 Langlands 対応の圏化の保型側における関手性を幾何学的に構成することである.またそれに関連し p 進シュトゥーカのモジュライ空間のコホモロジーや,局所 L パラメータのモジュライスタックの構造について調べる.

研究実績の概要

Fargues--Scholze による p 進簡約代数群 G に対する局所 Langlands 対応の圏化と,幾何学的 Langlands 対応における研究を参考に,局所 Langlands 対応の圏化を p 進簡約代数群の被覆群に拡張する研究を進めた.まず,幾何学的 Langlands 対応の場合を参考にして,被覆群の設定において基礎となる gerbe の構成を与えることができた.さらに技術的に重要なステップであると思われる混標数の幾何学的佐武対応の証明を検討し,被覆群の設定においても機能する議論を模索した.その結果議論を改善することで,混標数の幾何学的佐武対応の証明できる見通しがたった.Langlands 対応の有限体類似の定式化と証明についても検討を進め,証明の見通しがたった.さらに局所 Langlands 対応の圏化と Langlands 対応の有限体類似の整合性についても考察を進め,予想を定式化することができた.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

技術的に重要なステップであると思われる混標数の幾何学的佐武対応の証明の見通しがたったので順調に進展しているといえる.

今後の研究の推進方策

Fargues--Scholze による p 進簡約代数群 G に対する局所 Langlands 対応の圏化と,幾何学的 Langlands 対応における研究を参考に,関手性の幾何学的実現について研究を進める.まず被覆群の設定における混標数の幾何学的佐武対応の証明をさらに検討し,完成させる.次のステップは被覆群の設定における L パラメータのモジュライ空間の構成である.このステップは, p 進簡約代数群の場合と同様の手法で問題なく進むと考えているが,それについて確認する.それができたのちは,L パラメータの構成と,既存の構成との整合性の問題を考える予定である.これと並行して,被覆群の設定における局所 Langlands 対応の圏化予想の定式化についても検討を進める.Langlands 対応の有限体類似についてもさらに検討を進め,整合性の問題をより精密に定式化できるかという問題について考える.またポスドク研究員を雇用し,関連する問題も含め研究を進める.

報告書

(2件)
  • 2022 審査結果の所見   実績報告書
  • 研究成果

    (7件)

すべて 2024 2023 2022 その他

すべて 国際共同研究 (1件) 雑誌論文 (5件) (うち国際共著 2件、 査読あり 5件、 オープンアクセス 3件) 学会発表 (1件) (うち国際学会 1件、 招待講演 1件)

  • [国際共同研究] ミシガン大学(米国)

    • 関連する報告書
      2022 実績報告書
  • [雑誌論文] Partial Hasse invariants for Shimura varieties of Hodge-type2024

    • 著者名/発表者名
      Imai Naoki、Koskivirta Jean-Stefan
    • 雑誌名

      Advances in Mathematics

      巻: 440 ページ: 109518-109518

    • DOI

      10.1016/j.aim.2024.109518

    • 関連する報告書
      2022 実績報告書
    • 査読あり / 国際共著
  • [雑誌論文] The Jacobson-Morozov Morphism for Langlands Parameters in the Relative Setting2024

    • 著者名/発表者名
      Bertoloni Meli Alexander、Imai Naoki、Youcis Alex
    • 雑誌名

      International Mathematics Research Notices

      巻: - 号: 6 ページ: 5100-5165

    • DOI

      10.1093/imrn/rnad217

    • 関連する報告書
      2022 実績報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Local Galois representations of Swan conductor one2023

    • 著者名/発表者名
      Imai Naoki、Tsushima Takahiro
    • 雑誌名

      Pacific Journal of Mathematics

      巻: 326 号: 1 ページ: 37-83

    • DOI

      10.2140/pjm.2023.326.37

    • 関連する報告書
      2022 実績報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Geometric construction of Heisenberg-Weil representations for finite unitary groups and Howe correspondences2023

    • 著者名/発表者名
      Imai Naoki、Tsushima Takahiro
    • 雑誌名

      European Journal of Mathematics

      巻: 9 号: 2

    • DOI

      10.1007/s40879-023-00620-5

    • 関連する報告書
      2022 実績報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Geometric Realization of the Local Langlands Correspondence for Representations of Conductor Three2022

    • 著者名/発表者名
      Imai Naoki、Tsushima Takahiro
    • 雑誌名

      Publications of the Research Institute for Mathematical Sciences

      巻: 58 号: 1 ページ: 49-77

    • DOI

      10.4171/prims/58-1-3

    • 関連する報告書
      2022 実績報告書
    • 査読あり
  • [学会発表] Geometric Satake equivalence for p-adic covering groups2023

    • 著者名/発表者名
      Naoki Imai
    • 学会等名
      Arithmetic and Cohomology of Algebraic Varieties
    • 関連する報告書
      2022 実績報告書
    • 国際学会 / 招待講演

URL: 

公開日: 2022-04-19   更新日: 2025-04-17  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi