• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

A study into the use of Extended Concept Maps and Speech Recognition to improve lower-order language skills and higher-order thinking skills for language learners in Japan

研究課題

研究課題/領域番号 22K00760
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分02100:外国語教育関連
研究機関金沢大学

研究代表者

Gary Ross  金沢大学, 薬学系, 准教授 (10708142)

研究分担者 ヘネベリー スティーヴン  島根県立大学, 国際関係学部, 教授 (30405477)
ヨーク ジェームズ  明治大学, 政治経済学部, 専任講師 (90774498)
研究期間 (年度) 2022-04-01 – 2026-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
4,290千円 (直接経費: 3,300千円、間接経費: 990千円)
2025年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2024年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2023年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2022年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
キーワードspeech recognition / Large Language Models / ChatGPT / AI / chatbot / Concept Maps / online learning / concept maps / higher-order skills
研究開始時の研究の概要

The research will cover four keys areas:
* determine the most effective extended speech maps/Speech Recognition activities and framework, and analyse speech recognition accuracy.
* determine whether ECM and Speech Recognition leads to better language outcomes, engagement, self-reflection, and understanding.
* (i) refine the teaching framework to be disseminated at teacher workshops, with the aim of allowing teachers to integrate ECMs and Speech Recognition into their classrooms (ii) discover language patterns used by Japanese students.
* Attitudes toward ECM creation during Covid-19

研究実績の概要

Since the initiation of this project, the rapid advancement of AI technologies has prompted a slight expansion in our goals. Integration of AI Large Language Models with Concept Maps. Specifically, we have explored the application of Concept Maps to model interactions between pharmacy students and various aspects of lifestyle, medicine, and health. Our efforts have yielded successful results in several key areas:
Speech Recognition Integration: We have successfully implemented a speech recognition interface that works in conjunction with AI chatbots. This setup enables a detailed analysis of the complex interactions between patient needs, societal demands, and professional responses.
Enhanced Learning Experiences: By utilizing speech-synthesized AI chatbots, students engaged in simulated interactions that mirror real-world scenarios. This approach has proven effective in providing practical experiences, fostering a deeper understanding of patient-professional dynamics.
These achievements underscore the potential of combining AI with Concept Maps to enhance the learning and analytical capabilities of pharmacy students, paving the way for more innovative educational methodologies. Additionally, this approach can be adapted to address other complex problems beyond the medical field, offering valuable insights and practical applications in areas such as environmental science, engineering, and social sciences.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Project Overview: This research project has made significant strides in integrating advancements in AI language models with Extended Concept Maps (ECMs). These enhancements have positively impacted our objectives and outcomes across several key areas.
Achievement of Objectives: The integration of AI Large Language Models has been successfully implemented, enabling more sophisticated and nuanced interactions within the ECMs. This has improved the accuracy and responsiveness of speech recognition interfaces and AI-driven chatbots, facilitating better analysis and learning experiences.
Innovative Applications: By extending ECMs to interdisciplinary fields such as medicine, we have broadened the scope and impact of our research.
Collaboration and User Engagement: Development of collaborative platforms has allowed for real-time interaction with ECMs, fostering greater collaboration. User feedback has been integral in continuously improving the functionality and user experience of the ECMs.
Conclusion: The project has successfully integrated cutting-edge AI advancements.

今後の研究の推進方策

Moving forward, the research will focus on:

Interdisciplinary Applications: We will extend Extended Concept Maps (ECMs) to fields like social sciences to analyze complex interactions and broaden our research's scope and impact.
Advanced AI Integration: We will refine the integration of AI Large Language Models with ECMs, improving AI-driven speech recognition interfaces and chatbots to handle sophisticated interactions and provide nuanced insights.
Collaborative Platforms: We aim to develop platforms for real-time interaction with ECMs, fostering greater collaboration among students, educators, and professionals.
Data Analytics and Feedback: We will use advanced data analytics and pilot studies to assess ECM effectiveness and collect user feedback to improve functionality and user experience.

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 研究成果

    (9件)

すべて 2023 2022

すべて 雑誌論文 (1件) (うち査読あり 1件、 オープンアクセス 1件) 学会発表 (8件) (うち国際学会 1件)

  • [雑誌論文] Medical English communication training using ChatGPT and speech recognition2023

    • 著者名/発表者名
      Jeanette Dennisson and Gary Ross
    • 雑誌名

      Journal of Medical English Education

      巻: 22 ページ: 87-90

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス
  • [学会発表] ChatGPT and Speech Recognition in the ESP Classroom2023

    • 著者名/発表者名
      Gary Ross, Jeanette Dennisson
    • 学会等名
      PanSIG 2023
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Online speech: utilizing speech recognition in spaced learning2023

    • 著者名/発表者名
      Gary Ross, Jeanette Dennisson
    • 学会等名
      JALTCALL 2023
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Learning a foreign language with digital games. What does it take?2023

    • 著者名/発表者名
      Gary Ross, James York
    • 学会等名
      JALTCALL 2023
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Doctor-patient interview training chatbot and speech recognition technology2023

    • 著者名/発表者名
      Gary Ross, Jeanette Dennisson
    • 学会等名
      JASMEE 2023 Academic Meeting
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Use of AI, Speech Recognition and Synthesis in task-based language learning contexts2023

    • 著者名/発表者名
      Gary Ross, Jeanette Dennisson
    • 学会等名
      EuroCALL 2023, Iceland
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Improve Speaking in ESP Using Chatbot and Speech Recognition2023

    • 著者名/発表者名
      Gary Ross, Jeanette Dennisson
    • 学会等名
      JALT International Conference 2023
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] AI: Threats and Opportunities for Teachers and Learners2023

    • 著者名/発表者名
      Gary Ross, Mark Brierley
    • 学会等名
      JALT International Conference 2023
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Speech recognition: overview and accuracy2022

    • 著者名/発表者名
      Gary Ross, Stephen Henneberry, Aya Hasan
    • 学会等名
      JALTCALL 2022
    • 関連する報告書
      2022 実施状況報告書

URL: 

公開日: 2022-04-19   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi