• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

概均質ゼータ関数と保型形式の関連

研究課題

研究課題/領域番号 22K03251
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分11010:代数学関連
研究機関千葉工業大学

研究代表者

杉山 和成  千葉工業大学, 情報科学部, 教授 (90375395)

研究期間 (年度) 2022-04-01 – 2027-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
3,770千円 (直接経費: 2,900千円、間接経費: 870千円)
2026年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2025年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2024年度: 520千円 (直接経費: 400千円、間接経費: 120千円)
2023年度: 520千円 (直接経費: 400千円、間接経費: 120千円)
2022年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
キーワード概均質ベクトル空間 / ゼータ関数 / 保型形式 / Maass形式 / 概均質ゼータ関数
研究開始時の研究の概要

保型形式に関する逆定理とは、ディリクレ級数が関数等式など良い解析的性質をみたせば、そのディリクレ級数は保型形式のメリン変換になっているということを主張するものであり、保型形式を構成する有効な手段の一つと考えられている。最近、研究代表者らはマース形式(実解析的保型形式)に対するヴェイユ型の逆定理を証明したが、本研究では、この新しい逆定理を用いて概均質ゼータ関数と保型形式のL関数の関連について調べる。

研究実績の概要

不定値2次形式に対するジーゲル・ゼータ関数に対して、ディリクレ指標でひねったL関数の解析的性質(解析接続、関数等式)を証明し、それに対してマース形式に対するヴェイユ型逆定理を適用することでマース形式を構成した。実は、ジーゲル自身が1938年の論文の中で適切な逆定理を用いるとゼータ関数から保型形式を構成できるであろうという趣旨のことを書いていて、今回の計算はその方針に従ったものといえる。(1938年の時点では、ヴェイユの逆定理についての論文はなかった。)また、符号についてのある条件の下では、ジーゲル・ゼータ関数から正則保型形式が構成できることを確かめたが、これはジーゲル自身が1948年の論文の中で微分作用素の計算を使って証明したことと整合性がある。(1948年の論文の存在については、伊吹山知義氏からご教示いただいた。)投稿論文に対する査読者からのコメントに対応して修正をするという事を何度か繰り返していたが、今般、無事にResearch in Number Theory 誌にアクセプトされた。また、2023年度の整数論サマースクール「概均質ベクトル空間論の発展」の世話人の一人となり運営に携わったが、このような集会を開催できたことは、概均質ベクトル空間の研究の発展に大きく寄与するものと思われる。サマースクールにおいて、概均質ゼータ関数についての入門的な講義を行い、最新の結果に関する簡単な説明を含む概説記事を執筆した。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

ジーゲル・ゼータ関数についての論文が出版されたことは、本研究を遂行していくうえで意義がある。整数論サマースクールの報告集の中で、ゼータ関数についての最新の結果についての簡単な紹介を含む記事の執筆を担当したが、その際に改めて概均質ゼータ関数と保型形式との関連について(自分がいま取り組んでいるものだけではなく)網羅的に理解することができた。本研究課題についても新たな方向性が見えてきており、それにしたがって着実に研究を進めていきたい。

今後の研究の推進方策

これまでの研究を継続として、概均質ゼータ関数と保型形式の関連について調べていく。整数論サマースクールにおいて、関数等式の計算の新しい知見が得られたので、それにしたがって少し計算してみたいと考えている。そのために、パソコンや数式処理ソフトの購入を検討してる。

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 研究成果

    (6件)

すべて 2024 2023 2022

すべて 雑誌論文 (4件) (うち査読あり 2件、 オープンアクセス 4件) 学会発表 (2件) (うち国際学会 1件)

  • [雑誌論文] The modularity of Siegel’s zeta functions2024

    • 著者名/発表者名
      Sugiyama Kazunari
    • 雑誌名

      Research in Number Theory

      巻: 10 号: 2 ページ: 1-38

    • DOI

      10.1007/s40993-024-00516-7

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] 概均質ゼータ関数の定義と基本的性質 (1 変数の場合)2024

    • 著者名/発表者名
      杉山和成
    • 雑誌名

      第30回整数論サマースクール報告集「概均質ベクトル空間論の発展」報告集

      巻: 30 ページ: 19-51

    • 関連する報告書
      2023 実施状況報告書
    • オープンアクセス
  • [雑誌論文] The modularity of Siegel's zeta functions2023

    • 著者名/発表者名
      杉山和成
    • 雑誌名

      京都大学数理解析研究所講究録

      巻: 2264 ページ: 127-142

    • 関連する報告書
      2023 実施状況報告書
    • オープンアクセス
  • [雑誌論文] Shintani correspondence for Maass forms of level $N$ and prehomogeneous zeta functions2022

    • 著者名/発表者名
      Sugiyama Kazunari
    • 雑誌名

      Proceedings of the Japan Academy, Series A, Mathematical Sciences

      巻: 98 号: 7 ページ: 41-46

    • DOI

      10.3792/pjaa.98.008

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / オープンアクセス
  • [学会発表] 概均質ゼータ関数の定義と基本的性質 (1 変数の場合)2023

    • 著者名/発表者名
      杉山和成
    • 学会等名
      第30回整数論サマースクール「概均質ベクトル空間論の発展」
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] The modularity of Siegel's zeta functions2023

    • 著者名/発表者名
      Kazunari Sugiyama
    • 学会等名
      RIMS共同研究「保型表現の解析的・数論的研究」
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会

URL: 

公開日: 2022-04-19   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi