• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Integrability in Gromov--Witten theory

研究課題

研究課題/領域番号 22K03265
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分11010:代数学関連
研究機関東京大学

研究代表者

MILANOV Todor  東京大学, カブリ数物連携宇宙研究機構, 准教授 (80596841)

研究期間 (年度) 2022-04-01 – 2027-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
4,030千円 (直接経費: 3,100千円、間接経費: 930千円)
2026年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2025年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2024年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2023年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2022年度: 390千円 (直接経費: 300千円、間接経費: 90千円)
キーワードK-theory / Gromov-Witten / Fock space / Frobenius manifolds / quantum cohomology / vertex operators / Gromov-Witten invariants
研究開始時の研究の概要

Using methods from algebra and complex geometry, I am planning to construct systems of differential equations similar to the so-called KdV equation. The latter governs the motion of a wave in shallow waters. These differential equations have applications to geometry and possibly to string theory.

研究実績の概要

I worked on two projects in FY2023 related to the current grant proposal. First, I wanted to find rigorous mathematical proofs for several statements in physics (the work of Kimura and Pestun) about the partition function of a 5d quiver gauge theory. I was able to work out the details in the most elementary case when the quiver is of type A_1. Using the Lefschetz trace formula, I was able to compute the partition function which essentially coincides with the physics prediction but not quite. In particular, the physics statements about the relation between Nekrasov's qq-characters and W-algebras, even in this elemenatry case, are still hard to establish. My second project was in K-theoretic Gromov-Witten (KGW) theory. I found a closed formula for the genus-0 permutation-equivariant Gromov-Witten invariants of the point. My formula generalizes a well known formula by Y.P. Lee in the ordinary KGW theory. Moreover, I was able to find an interesting application of the K-theoretic Fock space of Weiqiang Wang to premutation equivariant KGW theory. Namely, there is a natural pushforward map which realizes the GW invariants as vectors in the Fock space. This new point of view allows me to extend one of my old results with Valentin Tonita to permutation-equivariant KGW, i.e., the genus-0 KGW invariants are governed by an integrable hierarchy of hydrodynamic type.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The work of Pestun and Kimura contains many interesting statements which however are hard to prove mathematically. The case of the A_1 quiver is definitely the starting point. Here one has to compute torus characters of representations defined via sheaf cohomology on the moduli spaces of torsion free sheaves on P^2. I am quite satisfied with the fact that I was able to understand very well the geometry of the moduli space and to perform actual computations. I got to the main point, i.e., investigating the relation between W-algebras and Nekrasov qq-characters. The Nekrasov quiver gauge theory provides a (q_1,q_2)-deformation of the W-algebras that I am interested in. On the other hand, K-theoretic Gromov-Witten (KGW) theory also has a very interesting relation to q-deformations. Namely, the mirror symmetry for KGW invariants involves the Jackson integral and q-difference equations. I do not claim that the gauge theory has something to do with KGW theory but I would like to understand the q-deformations coming from KGW theory too. I made many attempts before to understand Givental's permutation-equivariant KGW theory. I finally was able to find a point of view (based on the K-theoretic Fock space) which helps me to go through the basics of Givental's permutation-equivariant KGW theory. Here the main problem is to find an efficient way to compute the higher-genus KGW invariants of the point. I was able to understand genus-0 and I think that I am in very good shape to pursue the higher-genus case.

今後の研究の推進方策

I am planning to continue my investigation for both the quiver gauge theory of the A_1 quiver and the K-theoretic Gromov-Witten theory (KGW) of the point. For the quiver gauge theory, I have to understand the significance of two more results. One of them is the so called compactness result of Nekrasov. At least Nekrasov made an informal statement to me that his compactness result implies that his qq-characters are solutions to the screening equations. The other result concerns a limit in the quiver gauge theory which in the physics literature is known as the topological string limit. Apparently, the quiver gauge theory has an application in computing some formal expressions that appear in the localization formulas for the Gromov-Witten invariants of toric Calabi-Yau manifolds. For the other project, in KGW theory, my next goal is to test the ideas of the topological recursion. In the cohomological case, the Gromov-Witten invariants of the point can be computed via oscillatory integrals where the holomorphic forms involved in the construction of the integrals are defined via the topological recursion. In KGW theory, I am expecting a similar phenomenon but we will need to use q-oscillatory integrals instead. I am planning to test first the genus-0 case because I already have explicit formulas. I would like also to work out a similar formula for the KGW theory of the moduli spaces of r-spin structures. This would give me a q-deformation of the oscillatory integrals of A_r-1 singularity.

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 研究成果

    (9件)

すべて 2024 2023 2022

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件) 学会発表 (7件) (うち国際学会 5件、 招待講演 7件)

  • [雑誌論文] Reflection vectors and quantum cohomology of blowups2024

    • 著者名/発表者名
      Todor Milanov and Xiaokun Xia
    • 雑誌名

      SIGMA

      巻: 20

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Confluence in quantum K-theory of weak Fano manifolds and q-oscillatory integrals for toric manifolds2022

    • 著者名/発表者名
      Todor Milanov and Alexis Roquefeuil
    • 雑誌名

      Advances in Mathematics

      巻: 409 B ページ: 1-57

    • DOI

      10.1016/j.aim.2022.108682

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / 国際共著
  • [学会発表] Reflection vectors and quantum cohomology of blowups2023

    • 著者名/発表者名
      Todor Milanov
    • 学会等名
      Geometry and Physics seminar, IAS at Zhejiang University
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Frobenius manifolds and mirror symmetry2023

    • 著者名/発表者名
      Todor Milanov
    • 学会等名
      Algebraic Geometry Seminar, Tsinghua University
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Frobenius manifolds and vertex operators2023

    • 著者名/発表者名
      Todor Milanov
    • 学会等名
      Colloquium, Kyoto University
    • 関連する報告書
      2023 実施状況報告書
    • 招待講演
  • [学会発表] Primitive forms and Frobenius manifolds2023

    • 著者名/発表者名
      Todor Milanov
    • 学会等名
      Intense Lecture series, Kyoto University
    • 関連する報告書
      2023 実施状況報告書
    • 招待講演
  • [学会発表] Fano orbifold lines of type D and integrable hierarchies2022

    • 著者名/発表者名
      Todor Milanov
    • 学会等名
      Geometry and Physics seminar, Jiaotong University
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Frobenius manifolds and vertex operators2022

    • 著者名/発表者名
      Todor Milanov
    • 学会等名
      ZOOM lectures at Chinese University of Mining and Technology
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Reflection vectors for semi-simple Frobenius manifolds2022

    • 著者名/発表者名
      Todor Milanov
    • 学会等名
      IBS-CGP, 10th Anniversary Conference
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会 / 招待講演

URL: 

公開日: 2022-04-19   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi