• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

ランダムウォークの軌跡に関連する諸問題の研究

研究課題

研究課題/領域番号 22K03336
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分12010:基礎解析学関連
研究機関京都大学

研究代表者

白石 大典  京都大学, 情報学研究科, 准教授 (00647323)

研究期間 (年度) 2022-04-01 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
3,900千円 (直接経費: 3,000千円、間接経費: 900千円)
2024年度: 1,690千円 (直接経費: 1,300千円、間接経費: 390千円)
2023年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2022年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
キーワードランダムウォーク
研究開始時の研究の概要

一様全域木は統計物理に起源を持つ臨界確率モデルである。パーコレーションやイジング模型とある意味で同じクラスに属するランダムなクラスターモデルとして認識されている。パーコレーションやイジング模型に対しては、臨界点での解析が非常に困難である一方で、一様全域木は数学的に厳密に解析を進めることができるという利点がある。本研究では、その利点を最大限に活かして、数学的にも物理的にも最も興味がある3次元一様全域木の研究を進めていく。

研究実績の概要

本年度は以下の3つの研究に関して論文を作成した。
1) 低次元ランダムウォークのカットポイントから生成されるoccupation measureのスケール極限(arXiv:2310.09592)
2) 高次元ループ除去ランダムウォークの軌跡の上を走るランダムウォークの熱核評価(arXiv:2312.09522)
3) 3次元ループ除去ランダムウォークのスケール極限に関する研究(arXiv:2403.07256)
研究1)では、カットポイントのcounting measureを適切にnormalizeしたもの(これをoccupation measureと呼ぶ)を考え、ランダムウォークが走る格子のメッシュを0に近づけたとき、それがブラウン運動のカットポイントのMinkowski contentから作られる測度に収束することを示した。研究2)では、高次元ループ除去ランダムウォークの軌跡をランダムグラフとみなし、その上を走るランダムウォークを考察した。ランダムウォークの挙動を理解するために、熱核のoff-diagonalな評価をannealedな形で与えた。その際、高次元ループ除去ランダムウォークに対するlocal CLTを示す必要があるが、研究2)において弱い形のLCLTを与え、その評価を用いて所望の熱核評価を得た。研究3)では3次元ループ除去ランダムウォークのスケール極限のMinkowski contentが存在することをまず示した。それを用いてスケール極限をパラメータ付けして得られる確率過程に、ループ除去ランダムウォーク(を適切にスケーリングしたもの)が収束することを示した。その際に、ループ除去ランダムウォークに対するone-point functionとtwo-point functionの精密な評価を与えた。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

研究1)-3)のいずれも非自明で長い考察が要求される。いずれも確率論の一流ジャーナルに投稿中で、すでにrefereeから好反応をもらっている論文もある。昔、ある偉い人が「論文は年に2本(それより多くても少なくてもダメ)」と言っていたが、その観点から見ると3本の論文を書くということは少しオーバーワークだったかもしれない。しかしながらいずれの論文も高い水準を保っているので、「おおむね順調に進展している」を選んだ。

今後の研究の推進方策

研究1)に関しては、次のような未解決問題が残っている。すなわち、ランダムウォークのカットポイントはブラウン運動のカットポイントに収束するか?という問題である。ここで、カットポイントはユークリッド空間のランダムな部分集合と考え、収束はハウスドルフ距離の位相で考えている。よく知られているように、ランダムウォークの軌跡はブラウン運動の軌跡に収束するが、カットポイントは軌跡全体から見て「小さい」対象であるため、上記の問題は全く自明ではない。この問題の解決を試みている。
研究2)に関してはランダムグラフを高次元ループ除去ランダムウォークの軌跡から高次元単純ランダムウォークの軌跡に変更した時に同様の結果が得られるかという問題を現在考察中である。
研究3)に関しては、3次元ループ除去ランダムウォークのスケール極限の特徴付か大きな問題として残っている。

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 研究成果

    (4件)

すべて 2023

すべて 雑誌論文 (2件) (うち国際共著 1件、 査読あり 2件、 オープンアクセス 2件) 学会発表 (2件) (うち国際学会 1件、 招待講演 1件)

  • [雑誌論文] On the size of earthworm’s trail2023

    • 著者名/発表者名
      Burdzy Krzysztof、Feng Shi、Shiraishi Daisuke
    • 雑誌名

      Electronic Communications in Probability

      巻: 28 号: none ページ: 1-9

    • DOI

      10.1214/23-ecp556

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Scaling limit for random walk on the range of random walk in four dimensions2023

    • 著者名/発表者名
      D. A. Croydon and D. Shiraishi
    • 雑誌名

      Annales de l'institut Henri Poincare (B) Probabilites et Statistiques

      巻: 59 号: 1 ページ: 166-184

    • DOI

      10.1214/22-aihp1243

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / オープンアクセス
  • [学会発表] Loop-erased random walk in three dimensions2023

    • 著者名/発表者名
      Daisuke Shiraishi
    • 学会等名
      Stochastic Processes and Related Fields
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Random walk on uniform spanning trees2023

    • 著者名/発表者名
      Daisuke Shiraishi
    • 学会等名
      Workshop on Probabilistic Methods in Statistical Mechanics of Random Media and Random Fields 2023
    • 関連する報告書
      2022 実施状況報告書

URL: 

公開日: 2022-04-19   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi