研究課題/領域番号 |
22K03468
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分13010:数理物理および物性基礎関連
|
研究機関 | 九州大学 |
研究代表者 |
稲垣 紫緒 九州大学, 理学研究院, 准教授 (20452261)
|
研究分担者 |
江端 宏之 九州大学, 理学研究院, 助教 (90723213)
|
研究期間 (年度) |
2022-04-01 – 2025-03-31
|
研究課題ステータス |
交付 (2023年度)
|
配分額 *注記 |
4,160千円 (直接経費: 3,200千円、間接経費: 960千円)
2024年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2023年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2022年度: 1,950千円 (直接経費: 1,500千円、間接経費: 450千円)
|
キーワード | 非平衡散逸系 / 粉粒体物理 / 非熱揺らぎ / 非平衡物理学 / 粉粒体物理学 / 相分離 / ソーレ効果 |
研究開始時の研究の概要 |
粉粒体の分離現象を温度勾配という観点から理解を深め、空間スケールが大きく異なる高分子・コロイド溶液などの系と比較することで、系の詳細を超えてソーレ効果を一般化することを目指す。具体的には、平板上に二種類の粒子を単層に配置し、鉛直方向に加振する系を2種類考える。これらの系では、鉛直加振によって系に力学的エネルギーを注入し、基板-粒子、粒子-粒子間の非弾性衝突によってエネルギーを散逸する。エネルギーの注入や散逸に空間勾配を形成し、小粒子の充填率や粒子物性を変えて系統的に実験を行う。
|
研究実績の概要 |
コロイドや高分子の溶液系において、温度勾配に駆動されて濃度勾配が形成される「ソーレ効果」という現象がよく知られている。さらに、溶質の組み合わせによって、高温領域に物質が凝集する「負のソーレ効果」という現象が近年見出されている[前多・福山、日本物理学会誌 71, 746 (2016)]。本課題では、粉粒体のようなマクロな粒子からなる多粒子系の(相)分離現象について、大粒子が希薄で速度揺らぎの大きい領域に集まりやすい性質を「負のソーレ効果」に類似の現象と考え、粒子の速度揺らぎ (温度)の空間勾配を制御したモデル系を考案した。反発係数の低い領域では運動エネルギーを多く失うので、一度その領域に入ると抜け出づらい。そのため、基本的には大球も小球も低反発領域を好むが、小球の充填率を上げると、低反発領域が小球で埋まり、大球は排除体積効果によって高反発領域に弾き出されるのが実験的に観察された。粉体物理の分野において、速度分布の分散に比例した量を便宜上粉体温度と定義して、粉粒体の運動の揺らぎの大きさの指標として広く用いられている。粉体の速度揺らぎ(粉体温度)が大きいと考えられ、体積の大きい粒子が高温領域にはじき出されていると見ることもできる。実験では、実際に低反発領域で速度揺らぎ小さく、高反発領域で速度揺らぎが大きい分布になっていることが確認された。温度勾配に駆動される輸送現象をより詳しく調べるために、基盤の反発係数を制御するなどして、さらに実験を進める。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
粒子の材質と充填率を変えた実験を行い、大粒子の局在分布がどのように変わるかを実験的に調べた。大粒子が小粒子にはじかれて高反発領域に押し出される際、小粒子が凝集した領域が結晶化している効果を調べるために、小粒子を2種類の大きさの混合系にして行ったところ、大粒子が高反発領域に押し出される充填率が高くなることが観察された。 9月に加振機が故障するアクシデントがあったが、実験できない期間に予備データで解析コードの開発や数値計算を行うなどして、研究を滞りなく進めた。1月に加振機を貸与してもらい、実験を再開している。 2023年8月にはStatphysで口頭発表、9月にはThe 7th International Soft Matter Conferenceでポスター発表を行い、研究成果の発表と関連する研究者との議論・交流を行った。2023年度はScientific Reports2報、Physical Review E1報の論文採択もあり、研究は順調に進展している。
|
今後の研究の推進方策 |
温度勾配に駆動される輸送現象をより詳しく調べるために、基盤の反発係数を制御するなどして、さらに実験を進める。現在は高反発領域と低反発領域の2つの区画に分けているが、数値計算で基盤の反発係数を連続に変化させた場合に、大粒子がどのように輸送されるかについても調べていく。大粒子が小粒子に押し出されるメカニズムを分子運動論の立場からも検討したい。
|