研究課題/領域番号 |
22K04762
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分26050:材料加工および組織制御関連
|
研究機関 | 公立小松大学 |
研究代表者 |
朴 亨原 公立小松大学, 生産システム科学部, 准教授 (70761021)
|
研究期間 (年度) |
2022-04-01 – 2025-03-31
|
研究課題ステータス |
交付 (2022年度)
|
配分額 *注記 |
4,160千円 (直接経費: 3,200千円、間接経費: 960千円)
2024年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2023年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2022年度: 2,600千円 (直接経費: 2,000千円、間接経費: 600千円)
|
キーワード | 超微細粒純チタン / 大ひずみ加工熱処理 / 加工誘起相変態 / 再結晶 / 動的冶金現象 |
研究開始時の研究の概要 |
比較的低強度である純チタンは、高強度が求められる構造部材への適用が難しいことから、実用化が困難であった。申請者は、1パス大ひずみ加工熱処理により低炭素鋼の相変態を加速化させ、1μm程度の結晶粒径を有する高強度・高延性低炭素鋼の創製に成功した。このプロセスは、実用化・大量生産に向けた押出・鍛造・圧延プロセスに適用可能という長所をもっている。純チタンも900℃付近で相変態が起こるため、加工温度900℃・ひずみ速度1/s・圧下率70-83%で圧縮試験を行った結果、平均結晶粒径2~4μmの微細粒純チタンが得られた。そこで本研究では1パス大ひずみ加工熱処理を用いて高強度超微細粒純チタンの創製とプロセス基盤構築を試みる。
|
研究実績の概要 |
本研究の最終目的は,1パス大ひずみ加工熱処理プロセス(圧下率70-90%)による純チタンにおける超微細粒の形成メカニズムの解明や製造プロセスの構築にある。加工熱処理プロセスを用いて純チタンの結晶粒を超微細化するためには,温度,ひずみ,ひずみ速度,冷却方法の主なパラメータ制御が重要である。特に温度は相変態に影響を及ぼすため,組織微細化に大きく影響する。したがって加工熱処理による純チタンの超微細粒の形成メカニズムとして,1) 相変態温度付近での加工誘起動的相変態,2) 相変態温度以下での動的再結晶によることが考えられる。 ここに着目し,1年目では相変態点以下の800℃と相変態点付近の900℃でひずみ速度1/sとし,圧下率を50~85%に変化しながら,純チタンにおける超微細粒の形成メカニズムの解明と700・900・1000℃で加工熱処理された純チタンの成形性を調査した。 その結果,加工温度800・900℃,ひずみ速度1/s,圧下率70~85%で2~4umの結晶粒径を有する純チタンが製造できた。加工温度800℃では動的再結晶,900℃では動的再結晶+加工誘起動的相変態が超微細粒の形成メカニズムであることが明らかになった。また,初期材,加工温度700・900・1000℃,ひずみ速度1/s,圧下率70%で加工熱処理した試験片を用いて90°V曲げ試験を行った結果,加工温度700℃の試験片が最高強度を示し,加工温度が900℃から1000℃に増加するにつれて強度は低下した。これはβトランザス以上で加工した試験片では粗大粒を有したためであることが明らかになった。よって純チタンを超微細粒化させるためには,βトランザス以下(約900℃)で加工熱処理を実施する必要があることが判った。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
1年目の計画通り,純チタンを用いて相変態点付近(800~900℃)で圧下率(50~85%)による超微細粒の形成メカニズムについて解明した。また,V曲げ試験を用いて加工温度による純チタンの金属組織・強度・成形性の関係について明らかにした。
|
今後の研究の推進方策 |
2年目には1年目の結果を踏まえて,加工温度700~1000℃,圧下率70%に固定し,ひずみ速度を0.1~10/sに変化しながら,ひずみ速度による超微細粒の形成可能性について探求する。 今年度の実施では,以下の2つの可能性について検討する。 1)ひずみ速度 0.1/s:低速加工時に発生する動的回復による影響 2)ひずみ速度10/s:高速加工に発生する転位蓄積による動的再結晶及び加誘起機動的相変態への活性化 さらに,有限要素解析を通して加工中の試験片内部の温度,ひずみ,ひずみ速度の変化について検討を進める。
|