研究課題/領域番号 |
22K04910
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分29010:応用物性関連
|
研究機関 | 秋田県立大学 |
研究代表者 |
山口 博之 秋田県立大学, システム科学技術学部, 准教授 (80261866)
|
研究期間 (年度) |
2022-04-01 – 2025-03-31
|
研究課題ステータス |
交付 (2023年度)
|
配分額 *注記 |
2,340千円 (直接経費: 1,800千円、間接経費: 540千円)
2024年度: 520千円 (直接経費: 400千円、間接経費: 120千円)
2023年度: 520千円 (直接経費: 400千円、間接経費: 120千円)
2022年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
|
キーワード | 電界 / 導電率 / ゼーベック係数 / 透明導電性薄膜 |
研究開始時の研究の概要 |
透明導電膜はオプトロニクス産業に欠かせないが、代表的素材のITOは希少なインジウムを含むため、レアメタルを含まない代替材料の開発が必須である。本課題では、PEDOT:PSSおよび還元型酸化グラフェン(rGO)に注目する。軽量、フレキシブルなど優位な点も多いが、更なる電子機能の改善が求められている。本研究では、PEDOT:PSSおよびrGOの結晶性を高め、ITOに匹敵するような透明導電性能を実現する合成技術の確立を目指す。原材料の分子が電気的極性を有することを利用し、外部電界により物理的に分子を規則正しく配列させ結晶性を高めることで電気伝導率、機械的強度、密着性、可視光透過性の向上を狙う。
|
研究実績の概要 |
グラフェンは高性能なフレキシブル電子デバイスへの応用が期待される。工業応用に有力な作製方法として、絶縁基板上に塗布し直接成膜できる酸化グラフェン(GO)還元法に注目している。ただ酸化グラフェン還元法で得られる還元型酸化グラフェン(rGO)は、膜質や導電性において、さらなる改善が求められている。これまでに我々のグループでは、還元前に酸化グラフェン塗布液を1kV/cmまでの電界下で乾燥固化させることで、電気伝導率を改善してきた。今回は乾燥固化時の印加電界をさらに高めることで電気伝導率の更なる改善を図り、結晶性と絡めて議論した。電界印可用の電極を作製し直して7kV/cmまでの電界を放電せずに安定して印加できるようにした。そのうえでGO塗布液を7kV/cmまでの異なる電界下で乾燥固化したのち、還元処理で得られたrGO薄膜の物性を評価し、以下の結果を得た。印加電界を7kV/cmまで上げるのに伴い、rGO薄膜の電気伝導率は1400S/cmから1800S/cmまで緩やかに単調増加した。ホール効果測定結果は、キャリア濃度は印加電界にあまり依存せず、キャリア濃度が印加電界の増加に伴い向上することを示した。これは乾燥固化時の電界印加が、結晶性、あるいは配向性を高めることで電気伝導率を増加させた可能性を示唆する。さらに、ラマンスペクトル測定結果におけるG/D比は、印加電界の増加に伴い、緩やかに増加した。これらは乾燥固化時電界印加により、rGO膜の欠陥や構造乱れが抑制される可能性を示唆する。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
3: やや遅れている
理由
高周波かつ高強度の電界を乾燥時に印加し、周波数依存性を評価する予定であるが、まだ高電界パルス制御回路装置が出来上がっていない。
|
今後の研究の推進方策 |
高強度で高周波の電界を印加するために、リードリレーを用いて矩形波の高電界を印加できるように、制御回路をいそぎ作製、動作確認後、高電界パルス下での成膜・評価を行い、導電性能の周波数依存性を検討する。
|