• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

A novel study on visible ingredient identification in food images for food computing

研究課題

研究課題/領域番号 22K12095
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分61010:知覚情報処理関連
研究機関岩手県立大学

研究代表者

戴 瑩  岩手県立大学, ソフトウェア情報学部, 准教授 (60305290)

研究期間 (年度) 2022-04-01 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
4,160千円 (直接経費: 3,200千円、間接経費: 960千円)
2024年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2023年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2022年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
キーワードingredient recognition / ingredient segmentation / food image / decision-making / food recognition / deep learning / food computing
研究開始時の研究の概要

In this research, we focus on realizing the recognition of the visible ingredients in the food images. For this purpose, a new hierarchical structure for recognizing ingredients is proposed based on 農林水産省の生鮮食品品質表示基準. On the basis of this structure, a novel method of segmenting ingredients from the food images is explored. Then the method of extracting and representing the spotlight regions of the ingredients is investigated. Furthermore, an approach of classifying each ingredient is explored. The effectiveness of the proposed methods are evaluated on the prototype system.

研究実績の概要

Despite remarkable advances in computer vision and machine learning, food image recognition remains very challenging. Machines find it difficult to identify visible ingredients in food images due to significant variability in the shapes of the same ingredients, which often appear visually similar to those from other ingredient categories. In this research, we aim to address these challenges to achieve the recognition of visible ingredients in food images. We also aim to validate the effectiveness and efficiency of the proposed methods, contributing to the development of applications and services in the fields of health, medicine, cooking, nutrition, and related areas.
In 2023, we constructed a single-ingredient image dataset based on 農林水産省の生鮮食品品質表示基準. This dataset was used to train a single-ingredient classification model for recognizing multiple ingredients in food images. Additionally, we developed a multi-ingredient image dataset to rigorously evaluate the performance of multiple ingredient recognition. We then improved a new approach for segmenting multiple ingredients in food images using k-means clustering based on feature maps extracted from the single-ingredient classification model. Furthermore, these segments were recognized using an introduced decision-making scheme. Experimental results validated the effectiveness and efficiency of our method.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

We constructed and improved the single-ingredient image dataset, comprising 9,982 images across 110 diverse categories, emphasizing variety in ingredient shapes and cooking methods. The multiple-ingredient image dataset contains a total of 2,121 images, each depicting multiple ingredients under various cooking conditions.
We proposed a new framework for ingredient segmentation utilizing feature maps of the CNN-based single-ingredient classification model trained on the individual ingredient dataset with image-level annotation. This resolves the problem of excessively hard and time-consuming work required for pixel-level annotations to achieve semantic segmentation.
To tackle the challenge of processing speed in multi-ingredient recognition, we introduced a novel model pruning method to enhance the efficiency of the classification model.
The experiments particularly highlighted its competitive capability in recognizing multiple ingredients compared to state-of-the-art (SOTA) methods. Furthermore, it was found that the CNN-based pruned model enhances the ingredient segmentation accuracy of food images, marking a significant advancement in the field of food image analysis.

今後の研究の推進方策

In previous studies, we focused on addressing the issues of high intra-class variances and class imbalance in ingredient classification. This year, our aim is to solve the problem of high inter-class similarity in multiple ingredient recognition in food images. We propose a novel framework to recognize multiple ingredients, aiming to improve the performance of ingredient recognition by analyzing ingredients that are prone to being classified into other similar categories and introducing new models for these ingredients.
Furthermore, to validate the effectiveness and efficiency of the proposed methods, we plan to build a prototype system for multiple ingredient recognition in food images in the MATLAB environment.

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 研究成果

    (8件)

すべて 2024 2023 2022

すべて 雑誌論文 (4件) (うち査読あり 4件、 オープンアクセス 2件) 学会発表 (4件)

  • [雑誌論文] A New CNN-Based Single-Ingredient Classification Model and its Application in Food Image Segmentation2023

    • 著者名/発表者名
      Zhu Ziyi, Ying Dai
    • 雑誌名

      Journal of Imaging

      巻: 9 号: 10 ページ: 205-205

    • DOI

      10.3390/jimaging9100205

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] CNN-based visible ingredients recognition in a food image using decision making schemes2023

    • 著者名/発表者名
      Kun Fu, Ying Dai, et al.
    • 雑誌名

      Proceedings of IEEE SMC 2023

      巻: 1 ページ: 2427-2432

    • DOI

      10.1109/smc53992.2023.10394513

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり
  • [雑誌論文] Building CNN-Based Models for Image Aesthetic Score Prediction Using an Ensemble2023

    • 著者名/発表者名
      Ying Dai
    • 雑誌名

      Journal of Imaging

      巻: 9 号: 2 ページ: 30-30

    • DOI

      10.3390/jimaging9020030

    • 関連する報告書
      2023 実施状況報告書 2022 実施状況報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] CNN-based visible ingredient segmentation in food images for food ingredient recognition2022

    • 著者名/発表者名
      Zhu Ziyi、Dai Ying
    • 雑誌名

      Proc. of AAAI AAI 2022

      巻: 1 ページ: 348-253

    • DOI

      10.1109/iiaiaai55812.2022.00077

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり
  • [学会発表] 道路交通標識の検出と分類モデルの構築2024

    • 著者名/発表者名
      Masato Asanuma, Ying Dai
    • 学会等名
      情報処理学会第86回全国大会講演論文集1S-01
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Stable Diffusion を用いたキャラクタの画風変換に関する研究2024

    • 著者名/発表者名
      縣 憲世, 戴 瑩
    • 学会等名
      情報処理学会第86回全国大会講演論文集7S-01
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] 対戦格闘ゲームにおける初心者支援システムの研究2024

    • 著者名/発表者名
      須賀 智稀, 戴 瑩
    • 学会等名
      情報処理学会第86回全国大会講演論文集4S-05
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] CNN-BASED VISIBLE INGREDIENTS RECOGNITION IN A FOOD IMAGE USING DECISION MAKING SCHEMES2023

    • 著者名/発表者名
      19.Kun Fu, Ying Dai, Ziyi Zhu
    • 学会等名
      情報処理学会第85回全国大会講演論文集 4Q-06
    • 関連する報告書
      2022 実施状況報告書

URL: 

公開日: 2022-04-19   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi