• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Integrated deep learning model for personalized transcranial magnetic stimulation

研究課題

研究課題/領域番号 22K12765
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分90110:生体医工学関連
研究機関兵庫県立大学

研究代表者

Rashed Essam  兵庫県立大学, 情報科学研究科, 教授 (60837590)

研究分担者 平田 晃正  名古屋工業大学, 工学(系)研究科(研究院), 教授 (00335374)
ゴメスタメス ホセデビツト  千葉大学, フロンティア医工学センター, 准教授 (60772902)
研究期間 (年度) 2022-04-01 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
3,250千円 (直接経費: 2,500千円、間接経費: 750千円)
2024年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2023年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2022年度: 1,820千円 (直接経費: 1,400千円、間接経費: 420千円)
キーワードDeep learning / brain stimulation / TMS / Segmentation / Brain stimulation
研究開始時の研究の概要

Transcranial magnetic stimulation (TMS) is commonly used in several clinical procedures. Due to large variability of efficacy, planning of personalized stimulation is highly desired. However, personalized TMS requires a complicated data processing pipeline for individual head model generation to provide target-specific stimulation. This project aims at the development of accurate and reliable deep learning model to handle data processing, subject variabilities and other physical effects with integrated deep learning framework.

研究実績の概要

In this year, we have have conducted a comprehensive training process for the developed deep learning models. The training consider optimizing the process of TMS focalization of specific brain region (motor cortex) and how to estimate stimulation parameters in different scenarios. The SHARM dataset (https://arxiv.org/abs/2309.06677) developed last year is used in the training process with TMS data obtain from our research collaborators.
After the initial training, the model parameters are optimized using several validation studies to achieve superior network performance. We have evaluated different versions of the network architecture to validate potential variations such as adding attention layers and include BN/dropout layers. Now, we are in the phase of preparing publications.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

The research is progress smoothly than planned. We initially plan to complete three work packages in the first year (development of the deep learning model, data collection, and TMS simulation). Which are all successfully completed. Furthermore, we have reported results through several presentations and invited talks. Work package 4 that include network training (scheduled for FY2023) was partially completed in FY2022. Moreover, we have completed Work Package 5 (validation and optimization) which was planned to be completed within the third year.

今後の研究の推進方策

The research plan for FY2024 include two work packages (Result reporting) and (deployment of open-source software). We have made some conference publications and already submitted one journal paper to international journal and currently under review. Further publications is expected based on results we already have in hands.
Additional experiment will be conducted for extension of the achieved results in terms of TMS focal point optimization. Also, we will prepare documentation for the open-source software to ease sharing with research community.

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 研究成果

    (8件)

すべて 2024 2023 2022

すべて 雑誌論文 (1件) (うち国際共著 1件、 オープンアクセス 1件) 学会発表 (7件) (うち国際学会 3件、 招待講演 4件)

  • [雑誌論文] SHARM: Segmented Head Anatomical Reference Models2023

    • 著者名/発表者名
      Essam A. Rashed, Mohammad al-Shatouri, Ilkka Laakso, Akimasa Hirata
    • 雑誌名

      arXiv (preprint)

      巻: Corresponding Author ページ: 1-20

    • 関連する報告書
      2023 実施状況報告書
    • オープンアクセス / 国際共著
  • [学会発表] Improvement of brain stimulation pipeline using machine learning2024

    • 著者名/発表者名
      E. A. Rashed and A. Hirata
    • 学会等名
      Neuromodec Webinar Series
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Electromagnetic brain stimulation: verification of deep learning technology2024

    • 著者名/発表者名
      Essam A. Rashed
    • 学会等名
      The 63nd Annual Conference of Japanese Society for Medical and Biological Engineering," Kagoshima, Japan 22-25 May 2024
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Deep learning models for brain stimulation2023

    • 著者名/発表者名
      Essam A. Rashed
    • 学会等名
      Research Seminar at Australian Catholic University (ACU), Australia
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Deep learning-based segmented human head dataset2023

    • 著者名/発表者名
      Essam A. Rashed
    • 学会等名
      The 62nd Annual Conference of Japanese Society for Medical and Biological Engineering," Nagoya, Japan 18-20 May 2023
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Development of human head models from anatomical medical images using deep learning2022

    • 著者名/発表者名
      Essam Rashed
    • 学会等名
      The 2nd International Conference on Medical Imaging Science and Technology (MIST 2022)
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Deep learning models for efficient electromagnetic neuromodulation2022

    • 著者名/発表者名
      Essam Rashed
    • 学会等名
      兵庫県立大学 知の交流シンポジウム
    • 関連する報告書
      2022 実施状況報告書
  • [学会発表] Deep learning in medical imaging2022

    • 著者名/発表者名
      Essam Rashed
    • 学会等名
      Egypt - Japan Multidisciplinary Science forum, Health and artificial intelligence, post COVID era
    • 関連する報告書
      2022 実施状況報告書
    • 招待講演

URL: 

公開日: 2022-04-19   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi