研究課題/領域番号 |
22K12944
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分90150:医療福祉工学関連
|
研究機関 | 北海道科学大学 |
研究代表者 |
稲垣 潤 北海道科学大学, 工学部, 教授 (50337052)
|
研究分担者 |
春名 弘一 北海道科学大学, 保健医療学部, 准教授 (00712168)
昆 恵介 北海道科学大学, 保健医療学部, 教授 (30453252)
鈴木 昭弘 北海道科学大学, 工学部, 講師 (30826277)
|
研究期間 (年度) |
2022-04-01 – 2025-03-31
|
研究課題ステータス |
交付 (2023年度)
|
配分額 *注記 |
3,900千円 (直接経費: 3,000千円、間接経費: 900千円)
2024年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2023年度: 1,690千円 (直接経費: 1,300千円、間接経費: 390千円)
2022年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
|
キーワード | 転倒予防 / 機械学習 / 路面判定 / 積雪路面 / 画像認識 / 学習 |
研究開始時の研究の概要 |
寒冷地住民の健康寿命の延伸を阻害する一因である冬期路面での転倒対策として、本研究では足底接地前に路面状況を把握した上でユーザに滑りやすさ・危険度をフィードバックし、適切な歩幅・歩行姿勢の準備を促すシステムを開発する。具体的には1000枚以上の様々な積雪凍結路面をフィールドワークにより収集して学習させ、カメラで撮影した数歩先の路面状況をAIにより判定する。さらにスマートフォンアプリなど身近で実用性の高いシステムの実現に向けて検討を行う。
|
研究実績の概要 |
近年、日本では高齢化に伴い要介護者が増加している。その要因の第3位は骨折・転倒であり、これを予防するためには運動による筋力維持が重要だが、積雪寒冷地における冬期路面は転倒リスクが高いため高齢者は外出を避ける傾向にあり、結果として筋力が低下しさらに転倒リスクが高くなる負のスパイラルに陥りがちである。この問題を解決するには積雪凍結路面を安全にガイドするシステムの実現が望まれる。 本研究は、スマートフォン等のカメラで撮影された数歩先の路面映像から滑りやすさをAIにより「乾燥湿潤(レベル0)」~「極めて滑りやすい(レベル3)」の4段階で判定し、危険度をユーザに事前警告することにより冬期路面での転倒を予防する「AI転ばぬ先の杖」システムの開発を目的とするものである。 撮影された画像からその路面の滑りやすさをAIで分類するためには学習データ、すなわち積雪凍結路面の画像が数多く必要となるが、研究期間以前に個人で撮影したものと令和4年12月~令和5年3月に学生アルバイトを雇用して撮影したもの計1600枚ほどをを用いて学習を行い、路面状況を判定するシステムを試作した。実験の結果、「乾燥湿潤路面か積雪凍結路面か」の判別については正解率9割を超える成績であった一方、「凍結路面間での滑りやすさの差異」については正解率6~7割程度となる結果が得られた。 令和5年度はこの時点までのデータを基に論文を執筆・投稿し、現在査読中である。これと並行して、令和5年12月~令和6年3月にかけて学生アルバイトを雇用してさらに約3000枚の新たな学習データを収集することができた。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
令和5年度の計画は、システム全体のうち積雪凍結路面の画像から路面判別を行う学習部分の検討である。学習アルゴリズムの試作と冬期における積雪凍結路面画像の収集は概ね計画通り達成でき、論文投稿まで行うことができた。また、令和6年度にスマートフォンへの実装を行う計画についても立案を行った。
|
今後の研究の推進方策 |
令和5年度に新たに収集した画像を用いて学習を行い、路面判定の精度向上を図るとともに、論文投稿の過程で査読者にも指摘された学習に用いるモデルやパラメータの比較検討を行う。また、冬期にはさらに多くの路面画像を収集するために学生アルバイトを雇用する予定である。 また、学習結果をもとにスマートフォン経由で歩行者に警告を発するシステムについても計画遂行の道筋がついたので今年度中のプロトタイプの完成を目指す。
|