研究課題/領域番号 |
22K13890
|
研究種目 |
若手研究
|
配分区分 | 基金 |
審査区分 |
小区分11010:代数学関連
|
研究機関 | 東邦大学 |
研究代表者 |
土谷 昭善 東邦大学, 理学部, 講師 (30836953)
|
研究期間 (年度) |
2022-04-01 – 2026-03-31
|
研究課題ステータス |
交付 (2023年度)
|
配分額 *注記 |
4,420千円 (直接経費: 3,400千円、間接経費: 1,020千円)
2025年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2024年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2023年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2022年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
|
キーワード | 格子凸多面体 / トーリックイデアル / 2次生成 / Kempe同値 / パーフェクトグラフ / 理想的縮約グラフ / トーリック多様体 / トーリック環 |
研究開始時の研究の概要 |
本研究は可換環論・代数幾何学・数え上げ組合せ論・組合せ論的トポロジーなどの多様な分野が交叉する格子凸多面体論における懸案の未解決問題の解決を目的としている.実際,Unimodal予想,Gal予想,小田予想,Bogvad予想の4つの予想を同時に考えることで,新たに「非特異反射的凸多面体のh*多項式はγ-positiveである」ということを予想し,それを解決することで,上記の未解決問題の一般的解決の端緒を探る.
|
研究実績の概要 |
本研究の目的は,可換環論・代数幾何学・数え上げ組合せ論・組合せ論的トポロジーなどの多様な分野が交叉する格子凸多面体論における懸案の未解決問題の解決である.今年度の研究では,関西学院大学の大杉英史氏との共同研究により,有限グラフに付随する安定集合イデアルの部分イデアルとして2-coloringイデアルを定義し,付随するグラフのk彩色がKempe同値となる必要十分条件を,イデアル所属問題を用いて与えることに成功した. またKempeイデアルと呼ばれる2-coloringイデアルと,ある単項式イデアルを組み合わせてできるイデアルを定義し,Kempe類の様々な性質を,このイデアルの代数的性質を用いて調べることに成功した.具体的には,Kempe類はKempeイデアルの標準単項式に対応しており,Kempe類の数え上げ多項式は,このKempeイデアルの剰余環のHilbert関数と一致することがわかった.またグレブナー基底の理論を適用させることで,Kempe類に関する様々なアルゴリズムを代数的に与えることに成功した.今後はマッチング凸多面体と呼ばれるグラフに付随する格子凸多面体に関して,これまでの研究を応用し,その代数的および組合せ論的性質の解明を目指す.また引き続き今回導入した2つのイデアルの代数的性質について調べる.特に,2-coloringイデアルはトーリックイデアル,つまり,素イデアルとならないときがあるが,根基イデアルとなる可能性があるため,その証明を目指す.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
これまでの格子凸多面体の研究をKempe同値と呼ばれるグラフ理論の概念に応用することができ,今後の研究の発展が大きく見込まれるため.
|
今後の研究の推進方策 |
これまでの研究からマッチング凸多面体がグラフの辺彩色と関連することがわかったため,辺彩色の理論を用いてマッチング凸多面体の代数的,および組合せ論てき性質の解析を行う.
|