• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Thermodynamic inequalities under coarse-graining

研究課題

研究課題/領域番号 22K13974
研究種目

若手研究

配分区分基金
審査区分 小区分13010:数理物理および物性基礎関連
研究機関京都大学

研究代表者

Dechant Andreas  京都大学, 理学研究科, 講師 (50828845)

研究期間 (年度) 2022-04-01 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
3,120千円 (直接経費: 2,400千円、間接経費: 720千円)
2024年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2023年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2022年度: 520千円 (直接経費: 400千円、間接経費: 120千円)
キーワードentropy production / inequalities / diffusion / nonequilibrium / non-equilibrium / geometry / ゆらぎ / 非平衡 / 統計力学 / 熱力学
研究開始時の研究の概要

Thermodynamics makes predictions about what can and cannot happen in our physical reality, which often take the form of inequalities. The present research will investigate how such inequalities depend on our knowledge about a physical system and how detailed our description of the system is.

研究実績の概要

The first result (arXiv 2306.00417, under review) are inequalities for the power-spectral density of state-dependent observables. Such observables, unlike current observables considered in previous works, give a more coarse-grained representation of the underlying dynamics, since they do not direcly measure transitions. While this result is not directly connected to any of the original case studies, the fact that such observables can yield non-trivial estimates on entropy production is surprising.
The second result (arXiv 2310.17929, under review), pertaining to case study 1, are upper bounds on the entropy production in diffusive dynamics. While in most cases, coarse-graining reduces the apparent entropy production, I found that single-particle observables in interacting systems can also over-estimate the entropy production. This complements earlier results, showing that, depending on the knowledge about the dynamics, inequalities under coarse-graining can take either direction.
The third result (arXiv 2404.12761, under review), relevant to case study 2, is an investigation of enhanced diffusion by employing an effective discretized description. Crucially, enhanced diffusion only occurs in out-of-equilibrium situations; a publication about the corresponding thermodynamic inequalities is currently in preparation (see below).
Finally, two of the results of the previous project year was published this year, as Physical Review Letters 131, 167101 and as Physical Review E 107, L052101.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The results in arXiv 2310.17929 show that, suprisingly, single-particle observables can over-estimate entropy production. This, together with results obtained by other groups, provides a satisfatorily complete picture for case study 1.
As for case study 2, the results in arXiv 2404.12761 connect the observation of enhanced diffusion in continuous and discrete models; a publication about the application of this connection to thermodynamic inequalities is currently in preparation.
For case study 3, I was also already able to familiarize myself with the required techniques for running simulations on a GPU.

今後の研究の推進方策

During the current and last year of the project, there are two main tasks: The first is finishing a publication about thermodynamic inequalities for continuous and discrete models of enhanced diffusion; the results have already been obtained, so I am confindent this will be completed soon.
The second task is to develop the simulations required for case study 3. I am currently surveying existing software packages to deciede whether they are sufficient, or it is necessary to write new code. Then, performing the simulations and analyizing the results will be the major challenge in this year.

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 研究成果

    (10件)

すべて 2024 2023 2022

すべて 雑誌論文 (4件) (うち国際共著 4件、 査読あり 4件、 オープンアクセス 3件) 学会発表 (6件) (うち国際学会 4件、 招待講演 3件)

  • [雑誌論文] Thermodynamic Bounds on Correlation Times2023

    • 著者名/発表者名
      Dechant Andreas、Garnier-Brun Jerome、Sasa Shin-ichi
    • 雑誌名

      Physical Review Letters

      巻: 131 号: 16 ページ: 167101-167101

    • DOI

      10.1103/physrevlett.131.167101

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Thermodynamic uncertainty relations for steady-state thermodynamics2023

    • 著者名/発表者名
      Kamijima Takuya、Ito Sosuke、Dechant Andreas、Sagawa Takahiro
    • 雑誌名

      Physical Review E

      巻: 107 号: 5

    • DOI

      10.1103/physreve.107.l052101

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Housekeeping and excess entropy production for general nonlinear dynamics2023

    • 著者名/発表者名
      Kohei Yoshimura, Artemy Kolchinsky, Andreas Dechant, Sosuke Ito
    • 雑誌名

      Physical Review Research

      巻: 5 号: 1 ページ: 013017-013017

    • DOI

      10.1103/physrevresearch.5.013017

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Geometric decomposition of entropy production into excess, housekeeping, and coupling parts2022

    • 著者名/発表者名
      Andreas Dechant, Shin-ichi Sasa, Sosuke Ito
    • 雑誌名

      Physical Review E

      巻: 106 号: 2 ページ: 024125-024125

    • DOI

      10.1103/physreve.106.024125

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Thermodynamic constraints on the power spectral density in and out of equilibrium2024

    • 著者名/発表者名
      Dechant Andreas
    • 学会等名
      JPS 2024 Spring Meeting
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Bounds on the power spectral density2023

    • 著者名/発表者名
      Dechant Andreas
    • 学会等名
      Perspectives on Non-Equilibrium Statistical Mechanics
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Speed limits for ergodicity2023

    • 著者名/発表者名
      Dechant Andreas
    • 学会等名
      Statphys28
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Speed limits for ergodicity2023

    • 著者名/発表者名
      Andreas Dechant
    • 学会等名
      JPS 2023 Spring Meeting
    • 関連する報告書
      2022 実施状況報告書
  • [学会発表] Geometric decomposition of entropy production2022

    • 著者名/発表者名
      Andreas Dechant
    • 学会等名
      Dynamics Days Asia Pacific 12
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Speed limits for ergodicity2022

    • 著者名/発表者名
      Andreas Dechant
    • 学会等名
      JSPS London Symposium
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会 / 招待講演

URL: 

公開日: 2022-04-19   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi