研究課題/領域番号 |
22K14338
|
研究種目 |
若手研究
|
配分区分 | 基金 |
審査区分 |
小区分22050:土木計画学および交通工学関連
|
研究機関 | 大阪大学 |
研究代表者 |
葉 健人 大阪大学, 大学院工学研究科, 助教 (30876959)
|
研究期間 (年度) |
2022-04-01 – 2025-03-31
|
研究課題ステータス |
交付 (2023年度)
|
配分額 *注記 |
3,640千円 (直接経費: 2,800千円、間接経費: 840千円)
2024年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2023年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2022年度: 1,820千円 (直接経費: 1,400千円、間接経費: 420千円)
|
キーワード | 電動二輪車 / 交通行動分析 / 画像解析 / 行動パターン分析 / 小型電動車 |
研究開始時の研究の概要 |
本研究では、個人に対し最低3か月間小型電動車(SEV)を貸し出した実証実験において収集された走行軌跡データを用いて、SEVによる時系列の行動パターン分析を行う。分析は走行軌跡を可視化し、その時系列の画像データに対し画像解析技術を適用することで行動パターンを把握する。そして、そのパターンに基づき充電インフラ設備の配置計画を検討する。本研究は、新たな行動パターン分析手法を開発するとともに、近年導入が進むSEVの充電設備の配置計画手法を構築する点で有意義である。
|
研究実績の概要 |
2023年度は得られたSEV(ここではバッテリー交換型2輪EV)のGPSログデータから,トリップチェーンに対し画像解析を適用し類型化を行った.限られたサンプル数が限られていることから,トリップチェーンの単位を日,週,月など試行的に区分し,それぞれを画像として表現した.また,時系列の変化を表すために色を用いた. これらのデータセットを教師なしの画像分類モデルにインプットすることで,サンプル数と情報量のトレードオフ関係を確認した.その結果,週で区切ったトリップチェーンデータでは,ある程度のトリップチェーンのパターン,例えば高頻度近郊周遊型,低頻度長距離往復型などのパターンを把握できた.しかしながら,サンプル数の少なさ,および情報量の乏しさから,日・月単位でのトリップチェーンデータでは,そのパターンを把握しきれずにおり,これらの改善が望まれる. 並行して,移動ログ情報に加え,バッテリー交換データを用い,ある一定の再現性を得たバッテリー消費・交換行動モデルを構築した.これに基づき,ユーザー側のバッテリー交換に関わるパラメータおよびバッテリーインフラ側のパラメータを変化させ,これらが総走行距離やバッテリー交換頻度,バッテリー使用量の平準化に与える影響をシミュレーションした.これは,次年度に開発完了予定の画像をベースとしたトリップチェーン推定モデルを用いた,バッテリー交換設備の配置計画との比較のために構築した.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
本年度は,本研究が提案するトリップチェーン分析に対する画像解析技術の適用の一定の成果が得られたため.
|
今後の研究の推進方策 |
次年度は,適用した画像解析技術の精度の向上および,時系列性に基づく予測モデルを構築するためにLSTM(Long Short Term Memory)などのモデルを組み込むことを試みる.このモデルによる分析結果を,別途構築した機械学習も用いていない従来型のモデルの結果と比較する.そして,SEVsのインフラ配置計画の検討手法の開発を試みる.
|