• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

A novel theory of the magnetostriction mechanism using topological data analysis

研究課題

研究課題/領域番号 22K14590
研究種目

若手研究

配分区分基金
審査区分 小区分29010:応用物性関連
研究機関東京理科大学

研究代表者

LIRAFOGGIATTO ALEXANDRE  東京理科大学, 先進工学部マテリアル創成工学科, 助教 (30870927)

研究期間 (年度) 2022-04-01 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
4,680千円 (直接経費: 3,600千円、間接経費: 1,080千円)
2024年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2023年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2022年度: 3,120千円 (直接経費: 2,400千円、間接経費: 720千円)
キーワードMagnetostriction / TDA / Machine learning / Magnetization / Magnetic domains / Persistent homology / Machine Learning
研究開始時の研究の概要

Sensors are important devices in DX because they connect the real to the virtual world. Ferromagnetic shape memory alloy (FSMA) has been an intense research subject as actuators of sensors due to its high magnetostriction coefficient, low cost, and high-speed drive capability. The main topic of this research is to write a machine-learning outputted energy formula that describes the magneto-mechanical properties in real material based on structural and morphological properties to understand and improve FSMAs.

研究実績の概要

The research aims to explore the magnetostriction mechanism using topological data analysis and machine learning. By incorporating the material's morphology, we seek to develop a new, comprehensive theory.

Last year, we published a paper titled "Visualization of the Magnetostriction Mechanism in Fe-Ga Alloy Single Crystal Using Dimensionality Reduction Techniques" (doi: 10.1109/TMAG.2023.3312372) and presented our findings at the IEEE International Magnetics Conference.

This year, our focus has been on simulating ferromagnetic shape memory alloys (FSMA) by integrating metallography and magnetic properties. We developed custom software that combines phase-field and micromagnetics simulations. Using a mix of topological data analysis (persistent homology) and Fast Fourier Transformation (FFT), we described the the effect of stress through energy landscapes. I conducted simulations that integrate phase-field methods with micromagnetics, employing topological data analysis and unsupervised learning. This helped me identify key latent features in magnetization images and link them to their physical meanings. I observed energy barriers corresponding to changes in the magnetic domain structure of FSMA and visualized the energy exchange among different energy terms. This approach has allowed me to correlate microstructures with macro properties through free energy analysis.

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

The primary goal for this year was to fully develop a comprehensive simulation that integrates metallography and mechanical properties. This simulation uses phase-field methods to simulate the martensite transformation and micromagnetics simulations based on the Landau-Lifshitz-Gilbert (LLG) equation.
To date, we have made significant progress in developing this simulation and conducting preliminary analyses.
The initial analysis, which combines persistent homology and Fast Fourier Transformation (FFT), has shown promising results. It indicates that the formation of energy barriers can be explained by varying the stress within the material. However, further in-depth analysis is required to fully elucidate the underlying mechanisms. Our next steps involve refining the simulation and conducting more detailed analyses to achieve a comprehensive understanding of how stress influences the formation of energy barriers and, ultimately, the magnetostriction mechanism.

今後の研究の推進方策

Last year, the objective was to enhance the simulation to seamlessly integrate strain stress with metallography and magnetic properties. In the first year, I analyzed Magneto-Optical Kerr Effect (MOKE) microscope images and used feature extraction techniques and machine learning to determine their contribution to magnetostriction. The second year was dedicated to understanding the fundamental physical principles involved.In the previous year, we focused on the simulation to gain a comprehensive understanding of the system.

This year, the goal is to study how latent features influence local energy and how to control these interactions. Our observations indicated that analyzing energy contributions at individual regions, rather than the total average, provided interesting insights into the mechanism. We plan to use persistent homology and inverse analysis to link important regions contributing to magnetostriction with specific energy contributions. Achieving this connection will clarify the mechanism and allow us to incorporate metallographic information into the theoretical framework. This approach will enable a deeper understanding of how individual regions contribute to the overall energy landscape, thus providing a clearer picture of the magnetostriction mechanism.

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 研究成果

    (3件)

すべて 2024 2023

すべて 雑誌論文 (1件) 学会発表 (2件) (うち国際学会 1件、 招待講演 1件)

  • [雑誌論文] Visualization of the Magnetostriction Mechanism in Fe-Ga Alloy Single Crystal Using Dimensionality Reduction Techniques2023

    • 著者名/発表者名
      Foggiatto Alexandre Lira、Mizutori Yuta、Yamazaki Takahiro、Sato Shunsuke、Masuzawa Ken、Nagaoka Ryunosuke、Taniwaki Michiki、Fujieda Shun、Suzuki Shigeru、Ishiyama Kazushi、Fukuda Tsuguo、Igarashi Yasuhiko、Mitsumata Chiharu、Kotsugi Masato
    • 雑誌名

      IEEE Transactions on Magnetics

      巻: 59 号: 11 ページ: 1-4

    • DOI

      10.1109/tmag.2023.3312372

    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Visualization of the Magnetostriction Mechanism Using Machine Learning2024

    • 著者名/発表者名
      Alexandre Lira Foggiatto, Yuta Mizutori, Takahiro Yamazaki, Shunsuke Sato, Ken Masuzawa, Ryunosuke Nagaoka, Michiki Taniwaki, Shun Fujieda, Shigeru Suzuki, Kazushi Ishiyama, Tsuguo Fukuda, Yasuhiko Igarashi, Chiharu Mitsumata and Masato Kotsugi
    • 学会等名
      IEEE International Magnectics Conference
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Interpretation of Coercivity and Energy Mechanism based on the ex-GL model2023

    • 著者名/発表者名
      Alexandre Lira Foggiatto
    • 学会等名
      深化するデータ科学と表面科学, 日本表面真空学会関東支部 関東支部セミナー
    • 関連する報告書
      2022 実施状況報告書
    • 招待講演

URL: 

公開日: 2022-04-19   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi