研究課題/領域番号 |
22K19083
|
研究種目 |
挑戦的研究(萌芽)
|
配分区分 | 基金 |
審査区分 |
中区分36:無機材料化学、エネルギー関連化学およびその関連分野
|
研究機関 | 名古屋大学 |
研究代表者 |
鳥本 司 名古屋大学, 工学研究科, 教授 (60271029)
|
研究期間 (年度) |
2022-06-30 – 2024-03-31
|
研究課題ステータス |
交付 (2022年度)
|
配分額 *注記 |
6,500千円 (直接経費: 5,000千円、間接経費: 1,500千円)
2023年度: 2,600千円 (直接経費: 2,000千円、間接経費: 600千円)
2022年度: 3,900千円 (直接経費: 3,000千円、間接経費: 900千円)
|
キーワード | イオン液体 / スパッタ蒸着 / 複合ナノ粒子 / 電気化学特性 / ヘテロ接合 / 異方性形状ナノ粒子 / 光触媒 |
研究開始時の研究の概要 |
本研究は、イオン液体に減圧下で金属スパッタ蒸着することで、単分散な金属ナノ粒子を高精度に作製する手法(イオン液体/金属スパッタ蒸着法)を応用し、イオン液体表面に一次元の異方性をもつヘテロ接合ナノロッド粒子を精密に作製する。さらに、ロッド粒子の異方性をそろえて三次元的に電極上に積層して、新規なナノ粒子集積体を創製する。
|
研究実績の概要 |
本研究は、イオン液体に減圧下で金属スパッタ蒸着することで単分散な金属ナノ粒子を高精度に作製する手法(イオン液体/金属スパッタ蒸着法)を応用し、異なる金属を逐次的にスパッタ蒸着することで、イオン液体表面に複合ナノ粒子からなる単粒子膜をワンポットで作製するとともに、膜中の複合ナノ粒子の形状異方性を制御することを目指す。 初年度は、まず、イオン液体界面に一方向からナノ粒子前駆体を逐次的にスパッタ蒸着することで、二成分の金属種を含む複合ナノ粒子単粒子膜の作製を試みた。イオン液体にAuをスパッタ蒸着することで、Auナノ粒子が液体表面に二次元的に配列した単粒子膜を作製した。つづいてこのイオン液体にNiをスパッタ蒸着することで、Au-Ni複合ナノ粒子からなる単粒子膜をイオン液体表面に作製した。TEM測定から、サイズが数ナノメートルのAuナノ粒子が単粒子膜で液体表面に生成したことを確認した。さらにNiを逐次スパッタしてAu-Ni複合ナノ粒子を作製したところ、液体表面の単粒子膜中のナノ粒子サイズが増大し、NiがAu粒子表面に析出したことを確認した。得られたAu-Ni複合ナノ粒子単粒子膜を、水平付着法によって電極基板に写し取り、その電気化学特性を評価した。グラッシーカーボン上に固定してそのサイクリックボルタモグラムを測定したところ、金属Au表面の酸化皮膜の還元ピークに加えて、Ni(II)のNi(III)への酸化ピークも観測された。これらのことから、イオン液体表面へのAuおよびNiの逐次スパッタ蒸着によって、Au-Ni複合ナノ粒子単粒子膜ができたことがわかった。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
予定通りの成果が得られたため。すなわち、イオン液体にAuをスパッタ蒸着することで、Auナノ粒子が液体表面に二次元的に配列した単粒子膜を作製した。つづいてこのイオン液体にNiをスパッタ蒸着することで、Au-Ni複合ナノ粒子からなる単粒子膜をイオン液体表面に作製できた。TEM測定から、サイズが数ナノメートルのAuナノ粒子が単粒子膜で液体表面に生成したことを確認した。さらにNiを逐次スパッタしてAu-Ni複合ナノ粒子を作製したところ、液体表面の単粒子膜中のナノ粒子サイズが増大し、NiがAu粒子表面に析出したことを確認した。得られたAu-Ni複合ナノ粒子単粒子膜をグラッシーカーボン上に固定してそのサイクリックボルタモグラムを測定したところ、金属Au表面の酸化皮膜の還元ピークに加えて、Ni(II)のNi(III)への酸化ピークも観測された。これらのことから、イオン液体表面へのAuおよびNiの逐次スパッタ蒸着によって、Au-Ni複合ナノ粒子単粒子膜ができたことがわかった。
|
今後の研究の推進方策 |
異なる2つの金属のイオン液体表面への逐次スパッタ蒸着によって、二成分からなる複合ナノ粒子単粒子膜の作製に成功した。次年度は、本手法で得られた複合ナノ粒子の形状異方性を評価するとともに、光化学特性と電気化学特性を評価して複合ナノ粒子の組成と形状が及ぼす影響を解明する。具体的には、イオン液体表面に生成した複合ナノ粒子を電極基板に転写・固定して、積層方向に異方性をもつ次元ハイブリッド集積体を作製する。積層回数を増やすことで、2次元から3次元集積体へと膜厚を増大させ、光吸収効率を向上させる。作製したナノロッド粒子はType-IIヘテロ接合を持ち、長軸方向に内部電場が形成され、光生成した電子と正孔を効率よく分離すると期待される。そこで、得られる集積体と、溶液中に均一分散させた複合半導体ナノ粒子(集積体の構成要素)の発光寿命を測定し、次元ハイブリッド集積体形成による電荷分離効率の向上を確認する。さらに太陽光中の未利用な近赤外光による光触媒活性の発現と高効率化を目指す。
|