• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Event-Clock Hybrid Driven Reconfigurable Perception-Computation Technology

研究課題

研究課題/領域番号 22K21280
研究種目

研究活動スタート支援

配分区分基金
審査区分 1001:情報科学、情報工学およびその関連分野
研究機関奈良先端科学技術大学院大学

研究代表者

KAN YIRONG  奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (50963732)

研究期間 (年度) 2022-08-31 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
2,860千円 (直接経費: 2,200千円、間接経費: 660千円)
2023年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2022年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
キーワードReconfigurable Hardware / Stochastic Computing / Spiking Neural Network / Reconfigurable Computing / CGRA / Neuromorphic Systems / Spiking Neural Networks / Hybrid Driven
研究開始時の研究の概要

Future intelligent systems should not only be able to process information efficiently, but also be able to maintain continuous perception of the external environment. This research aims to develop a reconfigurable neuromorphic systems with adaptive perception-computation integration. By rationally merging adaptive spike representation, hybrid event-clock-driven neuron circuits and fully-parallel reconfigurable neural network architecture, low-power reconfigurable perception-computation integration for neuromorphic systems is expected to be achieved.

研究実績の概要

This year, we developed and verified the following technologies: (1) Designed and implemented an ultra-compact calculation unit with temporal-spatial re-configurability by combining a novel bisection neural network topology with stochastic computing; (2) Proposed a non-deterministic training approach for memory-efficient stochastic computing neural networks (SCNN). By introducing a multiple parallel training strategy, we greatly compress the computational latency and memory overhead of SCNN; (3) Developed a low-latency spiking neural network (SNN) with improved temporal dynamics. By analyzing the temporal dynamic characteristics of SNN encoding, we realized a high accuracy SNN model using fewer time steps.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Current research progress matches expectations. The main reasons are: (1) We implemented a computing platform with temporal-spatial reconfigurability through the combination of stochastic computing and bisection neural network;(2)The computational delay and memory overhead of stochastic computing neural networks are compressed through algorithm optimization;(3)A low-latency SNN model was developed via improved temporal dynamics. This year, three papers have been published at international conferences; one paper is currently being submitted to an international conference.

今後の研究の推進方策

We plan to combine SNN and bisection neural network topology to realize fully parallel and reconfigurable SNN hardware. By introducing structured sparse synaptic connections in SNNs, the neuron computation and weight storage costs can be significantly reduced. Benefiting from the hardware-friendly symmetric SNN topology, the accelerator is flexibly configured into multiple classifiers without hardware redundancy to support various tasks. We will explore how to achieve the highest classification performance with minimal hardware cost in the future work.

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 研究成果

    (10件)

すべて 2023 2022

すべて 雑誌論文 (3件) (うち国際共著 2件、 査読あり 3件) 学会発表 (7件) (うち国際学会 7件)

  • [雑誌論文] Bisection Neural Network Toward Reconfigurable Hardware Implementation2022

    • 著者名/発表者名
      Chen Yan、Zhang Renyuan、Kan Yirong、Yang Sa、Nakashima Yasuhiko
    • 雑誌名

      IEEE Transactions on Neural Networks and Learning Systems

      巻: Early Access 号: 3 ページ: 1-11

    • DOI

      10.1109/tnnls.2022.3195821

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] MuGRA: A Scalable Multi-Grained Reconfigurable Accelerator Powered by Elastic Neural Network2022

    • 著者名/発表者名
      Kan Yirong、Wu Man、Zhang Renyuan、Nakashima Yasuhiko
    • 雑誌名

      IEEE Transactions on Circuits and Systems I: Regular Papers

      巻: 69 号: 1 ページ: 258-271

    • DOI

      10.1109/tcsi.2021.3099034

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり
  • [雑誌論文] Online Learning of Parameters for Modeling User Preference Based on Bayesian Network2022

    • 著者名/発表者名
      Kan Yirong、Yue Kun、Wu Hao、Fu Xiaodong、Sun Zhengbao
    • 雑誌名

      International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

      巻: 30 号: 02 ページ: 285-310

    • DOI

      10.1142/s021848852250012x

    • 関連する報告書
      2022 実施状況報告書
    • 査読あり / 国際共著
  • [学会発表] An Ultra-Compact Calculation Unit with Temporal-Spatial Re-configurability2023

    • 著者名/発表者名
      Guangxian Zhu, Yirong Kan, Renyuan Zhang, Yasuhiko Nakashima
    • 学会等名
      2023 21st IEEE Interregional NEWCAS Conference (NEWCAS)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] A Low Latency Spiking Neural Network with Improved Temporal Dynamics2023

    • 著者名/発表者名
      Yunpeng Yao, Yirong Kan, Guangxian Zhu, Renyuan Zhang
    • 学会等名
      2023 IEEE 36th International System-on-Chip Conference (SOCC)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] A Non-deterministic Training Approach for Memory-Efficient Stochastic Neural Networks2023

    • 著者名/発表者名
      Babak Golbabaei, Guangxian Zhu, Yirong Kan, Renyuan Zhang, Yasuhiko Nakashima
    • 学会等名
      2023 IEEE 36th International System-on-Chip Conference (SOCC)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Adaptive spike-like representation of eeg signals for sleep stages scoring2022

    • 著者名/発表者名
      Lingwei Zhu, Ziwei Yang, Koki Odani, Guang Shi, Yirong Kan, Zheng Chen, Renyuan Zhang
    • 学会等名
      2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会
  • [学会発表] A Stochastic Coding Method of EEG Signals for Sleep Stage Classification2022

    • 著者名/発表者名
      Guangxian Zhu, Huijia Wang, Yirong Kan, Zheng Chen, Ming Huang, MD Amin, Naoaki Ono, Shigehiko Kanaya, Renyuan Zhang, Yasuhiko Nakashima
    • 学会等名
      2022 IEEE 35th International System-on-Chip Conference (SOCC)
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会
  • [学会発表] Automatic Sleep Staging via Frequency-Wise Spiking Neural Networks2022

    • 著者名/発表者名
      Haohui Jia, Ziwei Yang, Pei Gao, Man Wu, Chen Li, Yirong Kan, Renyuan Zhang
    • 学会等名
      2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会
  • [学会発表] GAND-Nets: Training Deep Spiking Neural Networks with Ternary Weights2022

    • 著者名/発表者名
      Man Wu, Yirong Kan, Renyuan Zhang, Yasuhiko Nakashima
    • 学会等名
      2022 IEEE 35th International System-on-Chip Conference (SOCC)
    • 関連する報告書
      2022 実施状況報告書
    • 国際学会

URL: 

公開日: 2022-09-01   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi