• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Response diversity: elucidating the long sought-after mechanisms underpinning ecosystem stability

研究課題

研究課題/領域番号 22K21332
研究種目

研究活動スタート支援

配分区分基金
審査区分 1101:環境解析評価、環境保全対策およびその関連分野
研究機関沖縄科学技術大学院大学

研究代表者

ROSS Samuel  沖縄科学技術大学院大学, 統合群集生態学ユニット, ポストドクトラルスカラー (60961795)

研究期間 (年度) 2022-08-31 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
2,860千円 (直接経費: 2,200千円、間接経費: 660千円)
2023年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2022年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
キーワードecology / stability / response diversity / resilience / duckweed
研究開始時の研究の概要

I will conduct 3 experiments on floating plants. 1: a simple test asking does response diversity produce less variable biomass. 2: an extension to different dimensions of stability (resistance, resilience etc.). 3: an extension to spatially-linked communities where dispersal/competition are possible

研究実績の概要

We conducted an experiment in Okinawa, using 75 100L buckets of water with floating aquatic plants. We used 4 species of plants in different combinations, and exposed them to Nitrate (to simulate agricultural runoff). Each week we measured water chemistry and took photographs of the plant communities, which reproduced clonally. We are developing a machine learning algorithm to automatically classify our plant species from photos. When finished, we will have data on plant growth and community composition changes, which we can use to understand how different species respond to Nitrogen, measure response diversity, and finally to relate response diversity to resilience of the communities. I also published a literature review about the topic of response diversity, part-supported by this grant

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

Turning photographs of the plants into useable ecological data has proven more difficult than anticipated. Instead of using an existing machine learning classifier to automatically identify our different plant species from photographs, we must develop our own tool to do this. We are currently working with a deep learning algorithm which is proving promising, but still requires several validation steps before we can use the data.

今後の研究の推進方策

The next step is to continue validation of our deep learning algorithm to identify plants and measure changes in abundance and composition in each mesocosm (100L bucket). To do this, I am currently manually labelling thousands of image segments with species identity to aid the automated identification pipeline. I anticipate several stages of retraining based on additional manual labelling.

Then, when I have data on species abundances, I will measure growth rates of different species under different nitrogen conditions, and when species are in mixture, I can measure the diversity of their growth responses. I will finally use the diversity of these responses to predict resilience (measured here as the inverse of the temporal variability of total biomass output from the combined community).

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実施状況報告書
  • 研究成果

    (4件)

すべて 2023 その他

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件) 学会発表 (2件) (うち招待講演 1件) 備考 (1件)

  • [雑誌論文] Limited theoretical and empirical evidence that response diversity determines the resilience of ecosystems to environmental change2023

    • 著者名/発表者名
      Ross Samuel R. P.‐J.、Sasaki Takehiro
    • 雑誌名

      Ecological Research

      巻: 39 号: 2 ページ: 115-130

    • DOI

      10.1111/1440-1703.12434

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] 地球環境変動下における生態系の安定性の規則性と原動力の解明に用いる統合的手法2023

    • 著者名/発表者名
      Samuel Ross
    • 学会等名
      Ecological Society of Japan Annual Meeting (ESJ70)
    • 関連する報告書
      2022 実施状況報告書
    • 招待講演
  • [学会発表] Response diversity: concepts, methods, and applications2023

    • 著者名/発表者名
      Samuel Ross, Owen Petchey, Response Diversity Network
    • 学会等名
      Ecological Society of Japan Annual Meeting (ESJ70)
    • 関連する報告書
      2022 実施状況報告書
  • [備考] Response diversity network

    • URL

      https://responsediversitynetwork.github.io/RDN-website/

    • 関連する報告書
      2023 実施状況報告書

URL: 

公開日: 2022-09-01   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi