• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Developing a high-precision dust simulation with the integration of an improved dust scheme and data-assimilation-based parameter estimation

研究課題

研究課題/領域番号 22K21337
研究種目

研究活動スタート支援

配分区分基金
審査区分 1101:環境解析評価、環境保全対策およびその関連分野
研究機関国立研究開発法人理化学研究所

研究代表者

江 嘉敏  国立研究開発法人理化学研究所, 計算科学研究センター, 特別研究員 (00948078)

研究期間 (年度) 2022-08-31 – 2024-03-31
研究課題ステータス 交付 (2022年度)
配分額 *注記
2,860千円 (直接経費: 2,200千円、間接経費: 660千円)
2023年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2022年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
キーワードdust simulation / data assimilation / parameter estimation / dead vegetation cover / threshold friction speed
研究開始時の研究の概要

Dust is a common meteorological phenomenon and affects human health and Earth system. However, the simulation remains a large bias because of miscalculating threshold friction speed. This study focuses on developing a high-precision dust-climate-Data-assimilation-based system. It is expected to explore a new solution to dust problems in East Asia and develop a useful tunable method technique to solve the dust parameterization problem. This system can couple with other models to fill the gap of uncertain interactions between dust and the environment and develop dust-prevention strategies.

研究実績の概要

Although the dust phenomenon has been implemented in the climate and Earth system models (ESMs) to estimate potential risk at the global scale, global simulation results indicated large biases of dust emission, deposition, and concentrations among ESMs, respectively. Particularly, the East Asian area.
This study focuses on developing a high-precision dust-climate-Data-assimilation-based system. There are three parts in this study:
(1) [An improved dust scheme]: I contacted Prof. Shao, a famous dust researcher and dust scheme developer, and visited his lab and tested the vegetation parameters based on his advice.
(2) [Updating the improved dust scheme in the meteorological model]: I contacted with SCALE-Chem development researcher, and am working on improving their model coding by adding vegetation parameters. It will finish this summer.
(3) [Optimizing the ideal u*t by DA-based parameter estimation]: SCALE-LETKF is being established at RIKEN, and I am testing some simulations for weather phenomena (such as typhoon and squall line) and feedbacking the results to the development team.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Based on our feedback, the SCALE-LETKF system is undergoing a general check.

今後の研究の推進方策

For the first part (SCALE-LETKF development), we will still follow to debug this system. Meanwhile, we are going to set up a list of experiments for parameter estimation to check the system performance. For the second part (parameterization of dead vegetation effect), although it is convenient to parameterize the effect of dead vegetation and test this performance in the SCALE-Chem, it is difficult that this model combines with data assimilation processes (LETKF) because this is an offline version. Therefore, after receiving a good performance in SCALE-Chem, we will move the coding to an online version of SCALE, SCALE-SPRINTARS, to continue integrating with the data-assimilation processes.

報告書

(1件)
  • 2022 実施状況報告書
  • 研究成果

    (2件)

すべて 2022 その他

すべて 国際共同研究 (1件) 学会発表 (1件)

  • [国際共同研究] University of Cologne(ドイツ)

    • 関連する報告書
      2022 実施状況報告書
  • [学会発表] Sensitive experiments of data assimilation localization scales for the pre-preparation of cumulus parameter estimation2022

    • 著者名/発表者名
      Kaman Kong, Arata Amemiya, Kenta Sueki, Hirofumi Tomita
    • 学会等名
      The Meteorological Society of Japan
    • 関連する報告書
      2022 実施状況報告書

URL: 

公開日: 2022-09-01   更新日: 2023-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi