研究課題/領域番号 |
22KF0023
|
補助金の研究課題番号 |
21F21379 (2021-2022)
|
研究種目 |
特別研究員奨励費
|
配分区分 | 基金 (2023) 補助金 (2021-2022) |
応募区分 | 外国 |
審査区分 |
小区分44030:植物分子および生理科学関連
|
研究機関 | 東北大学 |
研究代表者 |
植田 美那子 (2021, 2023) 東北大学, 生命科学研究科, 教授 (20598726)
|
研究分担者 |
KAO PING 東北大学, 生命科学研究科, 外国人特別研究員
|
受入研究者 |
植田 美那子 (2022) 東北大学, 生命科学研究科, 教授 (20598726)
|
外国人特別研究員 |
KAO PING 東北大学, 生命科学研究科, 外国人特別研究員
|
研究期間 (年度) |
2023-03-08 – 2024-03-31
|
研究課題ステータス |
完了 (2023年度)
|
配分額 *注記 |
2,300千円 (直接経費: 2,300千円)
2023年度: 100千円 (直接経費: 100千円)
2022年度: 1,000千円 (直接経費: 1,000千円)
2021年度: 1,200千円 (直接経費: 1,200千円)
|
キーワード | Arabidopsis thaliana / zygotic embryogenesis / transcriptome / cellular dynamics / embryogenesis |
研究開始時の研究の概要 |
本研究では、シロイヌナズナの初期発生過程において、器官形成の鍵となる転写因子群を探索する。まず、初期胚での遺伝子発現データをクラスタリングし、胚発生中に形成される各組織で働くと考えられる候補遺伝子群を選抜する。こられについて、蛍光マーカーを用いた発現パターンの可視化や、遺伝子破壊株による機能解析を行うことで、胚発生における役割を推定する。これらの解析を通じ、多様な発生運命を規定する分子基盤を明らかにすることを目指す。
|
研究実績の概要 |
The goal of this study is to identify the key regulatory genes involved in embryogenesis in Arabidopsis thaliana (Arabidopsis). Zygotic embryogenesis is a fundamental developmental process in which a single-celled zygote goes through a series of cell divisions, patterning and cell type specifications to form a complex embryo during eukaryotic sexual reproduction. In the flowering plant Arabidopsis, zygotes divide stereotypically, allowing observation of embryo patterning events and tracing cell lineages. While decades of genetic analyses have identified a number of genes that play vital roles in embryogenesis, the genome-wide analyses were not feasible until recently due to technical difficulties. We utilized published embryonic transcriptome datasets to search for key regulatory genes of embryogenesis as well as to resolve the underlying regulatory networks. With bioinformatics approaches, we selected a number of candidate genes for further validations and analyses. Identifying the key factors involved in embryonic cell divisions and specifications will greatly improve our knowledge of flowering plant embryogenesis mechanisms, which is important for understanding the fundamental biological process enabling multicellular eukaryotic lives.
|