• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

多面体的グラフにおける閉路の諸問題

研究課題

研究課題/領域番号 22KF0148
補助金の研究課題番号 22F22331 (2022)
研究種目

特別研究員奨励費

配分区分基金 (2023)
補助金 (2022)
応募区分外国
審査区分 小区分12030:数学基礎関連
研究機関横浜国立大学

研究代表者

小関 健太  横浜国立大学, 大学院環境情報研究院, 准教授 (10649122)

研究分担者 LO ON HEI SOLOMON  横浜国立大学, 大学院環境情報研究院, 外国人特別研究員
研究期間 (年度) 2023-03-08 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
2,100千円 (直接経費: 2,100千円)
2024年度: 700千円 (直接経費: 700千円)
2023年度: 1,100千円 (直接経費: 1,100千円)
2022年度: 300千円 (直接経費: 300千円)
キーワードハミルトン閉路 / 多面体的なグラフ / Hamilton cycle / polyhedral graph
研究開始時の研究の概要

与えられたグラフにおいて,その頂点数に比べて十分に長い閉路を見つける問題は,グラフ理論における重要な研究対象だが,非常に難しい問題であることが知らている.さらに,そのような長い閉路を1つ見るけるだけでなく,(1)指定した長さの閉路を見つける, (2)十分に長い閉路を1つではなくもっと多く見つける,など,より強い性質に関して,多くの重要な未解決問題が残されている.
特別研究員の Lo氏は,特に多面体的グラフにおいて豊富な知識を持ち,また,申請者は多面体的グラフのハミルトン閉路に関して,多くの研究を行っている.Lo氏と申請者のお互いの強みを相互作用させて未解決問題の解決を目指す.

研究実績の概要

多面体的なグラフにおいて (1)指定した長さの閉路を見つける, (2)十分に長い閉路を1つではなくもっと多く見つける,など,より強い性質に関しての重要な未解決問題の解決を目指すという本研究の目的に対し,逆にどのようなグラフがそのような閉路を持たないのかを考察することは,非常に重要な観点である.ハミルトン閉路を持つグラフにおいて,2つ目のハミルトン閉路を見つける手法を独立支配数を用いるものが知られているが,本年度,Lo 氏は Few hamiltonian cycles in graphs with one or two vertex degrees という題目の論文で,その手法の考察を行った.また,特定の条件を満たし,ちょうど1つのハミルトン閉路を持つグラフの構成も行っている.これらの結果は,多くのハミルトン閉路を持つための条件を与えるもので,本研究の目的に対して,大きな知見を与えるものである.
また,多面体的なグラフのハミルトン閉路を考察する際には,そのグラフの連絡度が重要なパラメータとなる.例えば,球面の3-連結な多面体的なグラフでは,頂点数の線形の長さの閉路すら持たないものが存在するが,その一方で,4-連結に近い連結性を持てば,最長閉路の長さが頂点数の線形となることが知られている.そのような連結度を考察するため,特にグラフの辺連結度については,Gomory-Hu木やその拡張という形でその構造を記述できることが知られている.Lo氏は「Generalized cut trees for edge-connectivity」という論文で,さらなる拡張を与え,辺連結度の構造の解析を行っている.これも,多面体的なグラフの構造の解析に利用できる可能性があり,今後の研究につながるものであると考えている.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

上で述べたように,2023年度には今後の研究につながる成果として,2編の論文を出版しているため,

今後の研究の推進方策

上で述べた2023年度の成果により,多面体的なグラフにおける閉路の分布の道筋が見えたため,2024年度は,この成果をもとに,指定した長さの閉路や,たくさんの閉路の存在について研究を進める.
4‐連結平面グラフ (球面の多面体的なグラフ) には,頂点数n の2乗オーダーの個数のハミルトン閉路が存在することが,近年,Liu, Wang, と Yu によって示されている.彼らの評価は,n のオーダーとしては最善であるが,その係数は最善ではないと考えられている.そのため,Lo氏と受入研究者の小関は,上記した辺連結度の構造の解析を踏まえながら,研究を進めており,いくつかの場合で一定の成果を得ている.2024年度の目標の1つは,この研究をさらに進め,最善の係数を得ることである.
また,その他にも,閉曲面上の多面体的グラフに関しての研究を進める予定である.

報告書

(2件)
  • 2023 実施状況報告書
  • 2022 実績報告書
  • 研究成果

    (4件)

すべて 2024 2023 2022

すべて 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件) 学会発表 (2件) (うち国際学会 1件)

  • [雑誌論文] Few hamiltonian cycles in graphs with one or two vertex degrees2024

    • 著者名/発表者名
      Goedgebeur Jan、Jooken Jorik、Lo On-Hei Solomon、Seamone Ben、Zamfirescu Carol
    • 雑誌名

      Mathematics of Computation

      巻: -

    • DOI

      10.1090/mcom/3943

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Generalized cut trees for edge-connectivity2024

    • 著者名/発表者名
      Lo On-Hei Solomon、Schmidt Jens M.
    • 雑誌名

      Journal of Combinatorial Theory, Series B

      巻: 165 ページ: 47-67

    • DOI

      10.1016/j.jctb.2023.11.003

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [学会発表] Cycle lengths in cubic polyhedral graphs2023

    • 著者名/発表者名
      Solomon Lo
    • 学会等名
      35th Workshop on Topological Graph Theory (TGT35)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Cycle lengths in 3-connected planar graphs2022

    • 著者名/発表者名
      Solomon Lo
    • 学会等名
      第 34 回位相幾何学的グラフ理論研究集会
    • 関連する報告書
      2022 実績報告書

URL: 

公開日: 2022-11-17   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi