研究課題/領域番号 |
22KF0381
|
補助金の研究課題番号 |
22F21070 (2022)
|
研究種目 |
特別研究員奨励費
|
配分区分 | 基金 (2023) 補助金 (2022) |
応募区分 | 外国 |
審査区分 |
小区分26020:無機材料および物性関連
|
研究機関 | 国立研究開発法人物質・材料研究機構 |
研究代表者 |
任 暁兵 (2023) 国立研究開発法人物質・材料研究機構, 電子・光機能材料研究センター, 上席研究員 (50292529)
|
研究分担者 |
KHATUA DIPAK 国立研究開発法人物質・材料研究機構, 電子・光機能材料研究センター, 外国人特別研究員
|
受入研究者 |
任 暁兵 (2022) 国立研究開発法人物質・材料研究機構, 電子・光機能材料研究センター, 上席研究員 (50292529)
|
外国人特別研究員 |
KHATUA DIPAK 国立研究開発法人物質・材料研究機構, 機能性材料研究拠点, 外国人特別研究員
|
研究期間 (年度) |
2023-03-08 – 2025-03-31
|
研究課題ステータス |
交付 (2023年度)
|
配分額 *注記 |
2,300千円 (直接経費: 2,300千円)
2023年度: 1,100千円 (直接経費: 1,100千円)
2022年度: 1,200千円 (直接経費: 1,200千円)
|
キーワード | 圧電材料 / 強誘電体 / PZT / 三重臨界点 / 相転移 / エネルギー収集 |
研究開始時の研究の概要 |
近年、振動エネルギーを電気エネルギーに変換できる強誘電材料・圧電材料振動エネルギーHarvesterが注目を集めている。しかし、通常の強誘電材料は絶縁体であるため、変換された電気エネルギーは十分な電流で外部デバイスに出力できない。 本研究では、申請者らのこれまでの研究成果を踏まえ、上記の難問を克服する方法を提案する。具体的に、これまで我々が研究した絶縁体である高性能圧電材料基づいて、電子型Dopantを添加し、圧電特性を維持しながら、材料の電気伝導率を大きく上昇させ、つまり、「金属性強誘電体」を創製する。これによって、上記ネック問題を解決し、高出力振動エネルギーHarvesterの創製が期待される。
|
研究実績の概要 |
We employed solid state synthesis process for piezoceramic fabrication. A number of characterizations were performed to find the structure property co-relation. We employed XRD investigations for structural and microstructural characterizations. Dielectric, piezoelectric and DSC measurements were performed in order to characterize the performance of the piezoelectric material. We also demonstrate the electrical energy generation performance of the fabricated piezoelectric device from random mechanical vibration. Our investigation has led to the extraordinary discovery namely, ultrahigh piezoelectricity (d33 > 3000 pC/N) in the polycrystalline ceramic. This result is very impactful in terms of high property-based applications and fundamental understanding.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
1: 当初の計画以上に進展している
理由
Our goal of the current project was the development of conducting ferroelectrics for enhanced mechanical energy harvesting. However, development of conducting ferroelectrics, led to the substantial reduction in the piezoelectric co-efficient which is an important parameter for the energy harvesting. Instead of that, alternatively we plan to develop ultrahigh piezoelectric co-efficient (d33) piezoelectric and then add conducting fillers such as CNT, graphene etc to make a conducting ferroelectric for better energy harvesting. Accordingly, we investigated a Pb based piezoelectric ceramic and obtained high (d33 > 3000 pC/N) in it.
|
今後の研究の推進方策 |
Our investigation has led to the extraordinary discovery namely, ultrahigh piezoelectricity (d33 > 3000 pC/N) in the polycrystalline ceramic. This result is very impactful in terms of high property-based applications and fundamental understanding. We are about to published a research paper in a reputed scientific journal in the following months.
|