研究課題/領域番号 |
23540106
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
研究分野 |
幾何学
|
研究機関 | 中央大学 |
研究代表者 |
三好 重明 中央大学, 理工学部, 教授 (60166212)
|
研究分担者 |
三松 佳彦 中央大学, 理工学部, 教授 (70190725)
高倉 樹 中央大学, 理工学部, 准教授 (30268974)
|
研究期間 (年度) |
2011 – 2013
|
研究課題ステータス |
完了 (2013年度)
|
配分額 *注記 |
2,990千円 (直接経費: 2,300千円、間接経費: 690千円)
2013年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2012年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2011年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
|
キーワード | 葉層構造 / 接触トポロジー / Thurston の不等式 / h 原理 / 沈め込み分類理論 |
研究概要 |
葉層構造は可積分接平面場であるが,1 次元接平面場に,より強い可積分条件を課した完全積分可能なベクトル場に関し,閉葉の位置の問題に関する研究を行った.即ち,3 次元開多様体内に与えられた絡み目を平面への沈め込みの 1 点の逆像として実現する問題に関し,その為の必要十分条件を与え,さらに結び目の場合にその古典的な不変量による記述を与えた. 完全積分可能なベクトル場に横断的な 2 次元葉層構造は Thurston の不等式を自然に満たし,開多様体上のそのような自然な族を与える.開多様体上で Thurston の不等式を満たす葉層構造を考察する為の一つの自然な雛形を与えると期待できる.
|