研究課題/領域番号 |
23740033
|
研究種目 |
若手研究(B)
|
配分区分 | 基金 |
研究分野 |
代数学
|
研究機関 | 日本大学 |
研究代表者 |
安福 悠 日本大学, 理工学部, 准教授 (00585044)
|
研究期間 (年度) |
2011-04-28 – 2015-03-31
|
研究課題ステータス |
完了 (2014年度)
|
配分額 *注記 |
4,030千円 (直接経費: 3,100千円、間接経費: 930千円)
2014年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2013年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2012年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2011年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
|
キーワード | ボエタ予想 / 数論的力学系 / 整数点 / 最大公約数 / モーデル・ラング予想 / 代数学 / ディオファントス幾何 / 国際研究者交流 / アメリカ:カナダ / 整数点と有理点 / 不変多様体 / 高さ関数 / フランス:韓国:アメリカ / アーベル多様体 / ヒルベルト第10問題 / アメリカ:イタリア / 単項式写像 / アメリカ:フランス |
研究成果の概要 |
ディオファントス幾何とは多変数多項式の整数解や有理数解について研究する分野で,ボエタ予想はその中での最重要予想の一つである.本研究では,ボエタ予想を射影空間のブローアップ上で新たに証明することに成功した.また,一つの写像を固定し,その多重合成により一つの点がどのように動かされていくか記録したものを軌道と言うが,軌道上の整数点があまりないこと,及び軌道と部分多様体の共通部分には,アーベル多様体の時と異なり規則性が皆無であることを証明した.
|