• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Differential geometry and integrable systems: exploiting new links

研究課題

研究課題/領域番号 23H00083
研究種目

基盤研究(A)

配分区分補助金
応募区分一般
審査区分 中区分11:代数学、幾何学およびその関連分野
研究機関早稲田大学

研究代表者

Guest Martin  早稲田大学, 理工学術院, 名誉教授 (10295470)

研究分担者 望月 拓郎  京都大学, 数理解析研究所, 教授 (10315971)
酒井 高司  東京都立大学, 理学研究科, 教授 (30381445)
金沢 篤  早稲田大学, 理工学術院, 准教授 (40784492)
大仁田 義裕  大阪公立大学, 数学研究所, 特別研究員 (90183764)
中村 あかね  城西大学, 理学部, 准教授 (30782130)
研究期間 (年度) 2023-04-01 – 2028-03-31
研究課題ステータス 交付 (2025年度)
配分額 *注記
39,780千円 (直接経費: 30,600千円、間接経費: 9,180千円)
2025年度: 8,060千円 (直接経費: 6,200千円、間接経費: 1,860千円)
2024年度: 8,060千円 (直接経費: 6,200千円、間接経費: 1,860千円)
2023年度: 8,320千円 (直接経費: 6,400千円、間接経費: 1,920千円)
キーワードIntegrable systems / Geometry / Quantum cohomology / tt*equations / tt* equations / Isomonodromy
研究開始時の研究の概要

This project will study integrable systems which are related to differential geometry and physics, focusing on problems where new progress is being made, such as the tt* equations, the Hitchin equations, and the harmonic map equations. As these problems involve links between different areas of geometry, it is necessary to combine integrable systems methods in an innovative way, in order to solve the relevant equations. This project will bring together specialists in several different areas, in order to attack such problems. Exploiting new links in this way is expected to lead to new progress.

研究実績の概要

Progress was made by the Principal Investigator (Guest) on several aspects of the tt*-Toda equations. First, in the case of the A_n-type equations, comparisons were made between the tt*-Toda equations and the Toda equations. The difference of signs greatly affects the solvability of the equations, as well as the properties of monodromy data and asymptotic data. Second, the symplectic and Lie-theoretic structure of the monodromy data of the tt*-Toda equations was studied from various points of view. Joint research in these two areas was carried out with Chang-Shou Lin (NTU, Taiwan), Alexander Its (IUPUI, USA), Nan-Kuo-Ho (NTHU, Taiwan), and Ian McIntosh (York, UK). This was reported at several seminar talks. Progress was also made by the Co-Investigators in areas of mirror symmetry, integrable systems, and differential geometry related to this project.

Several research activities were partially supported. Guest and Ohnita were co-organisers of the 4th Taiwan-Japan Joint Conference on Differential Geometry at the NCTS, National Taiwan University, Taipei in November 2023. Guest co-organised a workshop in the series “Koriyama Geometry and Physics Days” at Nihon University (Koriyama) in March 2024. Visiting specialists from abroad included Omar Kidwai (University of Birmingham, UK), Eckhard Meinrenken (University of Toronto, Canada), Florent Schaffhauser (University of Heidelberg, Germany). Ohnita co-organised the 4th International Conference on Surfaces, Analysis, and Numerics in Differential Geometry in February 2024 at Kagawa Prefectural Hall (Takamatsu City, Kagawa).

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Progress by the Principal Investigator this year was mainly related to sub-project (a) on the tt*-Toda equations, and sub-project (b) on the Hitchin equations.

Regarding (a1), a thorough study of the monodromy data and asymptotic data of the A_2 Toda equations was made, in order to compare and contrast with the tt*-Toda equations, with a view to future generalizations. This resulted in a preprint "Connection formulae for the radial Toda equations I" (M. A. Guest, A. R. Its, M. Kosmakov, K. Miyahara, R. Odoi, arXiv:2309.16550). The preprint "The tt*-Toda equations of A_n type" (M. A. Guest, A. R. Its, and C.-S. Lin , arXiv:2302.04597) was also updated to its final form in October 2023. Regarding (a2), joint work of Guest and N.-K. Ho on the monodromy data for the A_n tt*-Toda equations continued, and an article on this is in preparation. Also related to subproject (a), Hosono and Kanazawa made further progress with their study of the BCOV equations for Calabi-Yau varieties. Guest and O. Kidwai initiated a new project with the goal of understanding the role of the 2D and 4D tt* equations in the context of BPS solitons and the theory of Dubrovin/Joyce structures.

Regarding (b2), Guest and I. McIntosh classified real forms of the Toda equations for general Lie groups whose solvability is expected to hold, as a generalization of the known results for the A_n tt*-Toda equations. An article on this is in preparation. Also related to subproject (b), Mochizuki and Q. Li continued their joint work on harmonic bundles over noncompact Riemann surfaces.

今後の研究の推進方策

The focus for next year will be subprojects (a1), (a2), (b1), (b2). In addition to the task of generalizing results in the A_n case to the case of more general Lie groups, comparing tt*-Toda and Toda provides another promising direction. Although solvability of the Toda equation is more elementary than solvability of the tt*-Toda equation, the monodromy data and asymptotic data of the Toda equation presents interesting new phenomena.

Anticipated activities for next year include visits to Japan by I. McIntosh in order to continue the above work related to subproject (b2), and by N.K. Ho in order to continue the above work related to subproject (a2). Planned workshops include (1) a workshop on differential geometry and integrable systems at Waseda University, (2) a workshop in the series “Koriyama Geometry and Physics Days” at Nihon University (Koriyama). A research event co-organised by Guest, A. Its, and C.-S. Lin is also under consideration.

報告書

(2件)
  • 2023 審査結果の所見   実績報告書
  • 研究成果

    (13件)

すべて 2024 2023 その他

すべて 国際共同研究 (3件) 雑誌論文 (5件) (うち国際共著 3件、 査読あり 5件、 オープンアクセス 5件) 学会発表 (4件) (うち国際学会 2件) 学会・シンポジウム開催 (1件)

  • [国際共同研究] National Taiwan University/National Tsing-Hua University (Taiwan)(その他の国・地域)

    • 関連する報告書
      2023 実績報告書
  • [国際共同研究] IUPUI(米国)

    • 関連する報告書
      2023 実績報告書
  • [国際共同研究] Mannheim University(ドイツ)

    • 関連する報告書
      2023 実績報告書
  • [雑誌論文] BCOV cusp forms of lattice polarized K3 surfaces2023

    • 著者名/発表者名
      Shinobu Hosono and Atsushi Kanazawa
    • 雑誌名

      Adv. in Math.

      巻: 434 ページ: 109328-109328

    • DOI

      10.1016/j.aim.2023.109328

    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Harmonic metrics of generically regular semisimple Higgs bundles on noncompact Riemann surfaces2023

    • 著者名/発表者名
      Li Qiongling、Mochizuki Takuro
    • 雑誌名

      Tunisian Journal of Mathematics

      巻: 5 号: 4 ページ: 663-711

    • DOI

      10.2140/tunis.2023.5.663

    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Variational problems for integral invariants of the second fundamental form of a map between pseudo-Riemannian manifolds.2023

    • 著者名/発表者名
      Akiyama, Rika; Sakai, Takashi; Sato, Yuichiro
    • 雑誌名

      Osaka J. Math. 60, No. 4

      巻: 60, No.4 ページ: 873-901

    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Attractor mechanisms of moduli spaces of Calabi-Yau 3-folds2023

    • 著者名/発表者名
      Yu-Wei Fan, Atsushi Kanazawa
    • 雑誌名

      Journal of Geometry and Physics,

      巻: 185 ページ: 104724-104724

    • DOI

      10.1016/j.geomphys.2022.104724

    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] On quaternionic Keahler structures and totally complex submanifolds of quaternionic projective spaces2023

    • 著者名/発表者名
      Cho, Jong Taek; Hashimoto, Kaname; Ohnita, Yoshihiro
    • 雑誌名

      Proc. 24th International Workshop on Differential Geometry

      巻: 24 ページ: 217-238

    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Solving Riemann-Hilbert problems - a test case2024

    • 著者名/発表者名
      Guest Martin
    • 学会等名
      Geometry Seminar, University of Mannheim
    • 関連する報告書
      2023 実績報告書
  • [学会発表] Solving differential equations from quantum cohomology2023

    • 著者名/発表者名
      Guest Martin
    • 学会等名
      Colloquium, Tohoku University
    • 関連する報告書
      2023 実績報告書
  • [学会発表] Stokes phenomena in geometry2023

    • 著者名/発表者名
      Guest Martin
    • 学会等名
      Symposium on Nonlinear Differential Equations and the Stokes Phenomenon, OIST (Okinawa)
    • 関連する報告書
      2023 実績報告書
    • 国際学会
  • [学会発表] Global solutions of the tt*-Toda equations of A_n type2023

    • 著者名/発表者名
      Guest Martin
    • 学会等名
      Saint-Petersburg Conference in Spectral Theory and Mathematical Physics Euler Institute, St. Petersburg, online
    • 関連する報告書
      2023 実績報告書
    • 国際学会
  • [学会・シンポジウム開催] Modular Forms in Geometry and Physics2023

    • 関連する報告書
      2023 実績報告書

URL: 

公開日: 2023-04-13   更新日: 2025-06-20  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi