• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Dynamic Genre-Specific Automated Online Feedback Tool

研究課題

研究課題/領域番号 23K00656
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分02100:外国語教育関連
研究機関会津大学

研究代表者

CARR Nicholas  会津大学, コンピュータ理工学部, 准教授 (70965699)

研究分担者 Julian Villegas  会津大学, コンピュータ理工学部, 上級准教授 (50706281)
BLAKE John  会津大学, コンピュータ理工学部, 上級准教授 (80635954)
研究期間 (年度) 2023-04-01 – 2026-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
3,640千円 (直接経費: 2,800千円、間接経費: 840千円)
2025年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2024年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2023年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
キーワードAutomative feedback / Dynamic assessment / Sociocultural theory / iCALL / L2 Writing / Automated feedback / Dynamic feedback / Computer-science writing
研究開始時の研究の概要

This project develops an online tool which identifies genre specific errors in computer-science academic writing; errors which are not detected in generic grammar checking tools. The tool then provides dynamic feedback to users. The learning benefits of the tool are investigated longitudinally.

研究実績の概要

The Dynamic Genre-Specific Automated Online Feedback Tool we are developing is important because there is no online automated corrective feedback tool that provides dynamic feedback on the linguistic features of computer science writing. With the release of OpenAI, we are pursuing the incorporation of added features to our original tool - mainly targeting grammar errors. A thorough search of the literature shows that automated dynamic assessment of additional language writing is challenging due to not being able to predict learner errors. However, we are hoping to develop a tool which, through the use of generative AI, can take a step towards an interactionist type of automated dynamic assessment. The protoype is almost finished and multi-modal feedback explanations have been created.

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

We are making good progress. However, due to the release of OpenAI and other generative AI after applying for this finding, we are investigating the expansion of the tool to not only target genre-specific errors of computer science but also grammatical errors. This addition has meant we are very slighty behind our original schedule of releasing the prototype version of the tool.

今後の研究の推進方策

We intend to spend some more time further exploring the possibility of using generative AI for our tool. Such investigation is important because it will allow our tool to provide greater assistance to users. Once this is complete, the prototype version of the tool will be available for students to use and we will conduct multiple rounds of usability tests to refine the tool this academic year. This will set up the primary project, which is investigate the learning effects of using the tool over a full semester in the following year. We are always planning on submitting articles/book chapters to publish the development phase of the tool later in 2024.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (1件)

すべて 2024

すべて 学会発表 (1件) (うち国際学会 1件)

  • [学会発表] Dynamic Online Assessor: Scientific Genre-Specific Automated Feedback2024

    • 著者名/発表者名
      Nicholas Carr
    • 学会等名
      Japanese Association for Language Teacher Computer Assisted Language Learning 2024
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会

URL: 

公開日: 2023-04-13   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi