• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

KLR algebras and wreath zigzag algebras (KLR 代数とリース ジグザグ代数)

研究課題

研究課題/領域番号 23K03043
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分11010:代数学関連
研究機関沖縄科学技術大学院大学

研究代表者

Speyer Liron  沖縄科学技術大学院大学, 表現論と代数的組合せ論ユニット, 准教授(Assistant Professor) (00873762)

研究期間 (年度) 2023-04-01 – 2026-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
4,680千円 (直接経費: 3,600千円、間接経費: 1,080千円)
2025年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2024年度: 1,690千円 (直接経費: 1,300千円、間接経費: 390千円)
2023年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
キーワードKLR algebras / Quiver Hecke algebras / Hecke algebras / skew Specht modules / simple modules / Schurian-finiteness / Strictly wild / Zigzag algebras / Representation theory / RoCK blocks
研究開始時の研究の概要

The main goals of this project are to prove that certain truncations of blocks of type A cyclotomic KLR algebras are Morita equivalent to cyclotomic wreath zigzag algebras and study their decomposition numbers and other structural properties, via a higher-level analogue of RoCK block combinatorics. We will also construct a complete set of simple imaginary modules for the type A KLR algebras.

研究実績の概要

Our results with Susumu Ariki and Sinead Lyle determining that representation infinite blocks of type A Hecke algebras are Schurian-infinite appeared in the Journal of the LMS. We proved that outside of quantum characteristic 2, a block of a type A Hecke algebra is representation infinite (which is known to always be wild in this case) if and only it is Schurian-infinite. We have since begun studying the analogue of this problem for type B Hecke algebras.
I've also made progress studying another related problem, to determine when wild blocks of type A Hecke algebras are strictly wild.
I also completed joint work with Robert Muth, Thomas Nicewicz and Louise Sutton - the preprint is now available online as arXiv:2405.15759. We showed that for an arbitrary convex preorder, the simple modules for type A KLR algebras, which are known to be indexed by root partitions, appear as the heads of skew Specht modules given by explicit skew diagrams that we construct. This fully relates the theories of cuspidal systems and skew Specht modules for the first time - previously such a connection was only made for real roots.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Our work with Muth, Nicewicz and Sutton, now on the arXiv (arXiv:2405.15759), develops the combinatorics of skew diagrams and RoCK blocks, which will be used in a crucial way to relate KLR algebras and wreath zigzag algebras in our next paper.
Using this combinatorics, we were able to give the most explicit description of simple modules known for type A KLR algebras. For an arbitrary convex preorder, the simple modules for type A KLR algebras are known to be indexed by root partitions. For each root partition, we construct an explicit skew diagram, and the skew Specht module indexed by this diagram has simple head isomorphic to the simple module indexed by that root partition.

今後の研究の推進方策

The combinatorics we already developed for RoCK blocks and skew diagrams will allow us to take truncations of RoCK blocks of cyclotomic KLR algebras, corresponding to cutting out multicores from each multipartition in the block. In this setting, when we cut out a fixed multicore of defect 0, we showed that our truncation is Morita equivalent to a skew cyclotomic KLR algebra, which we introduced in our work arXiv:2405.15759. Next, we will show that this skew cyclotomic KLR algebra is isomorphic to a cyclotomic wreath zigzag algebra, providing a `local object’ for the higher level cyclotomic KLR algebras, analogous to the level 1 situation.


Separately, I am also completing a paper that determines the graded decomposition numbers for type C KLR algebras, and determines structures of Specht modules. I am also working on determining which representation-wild blocks of type A Hecke algebras are strictly wild.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (5件)

すべて 2024 2023 その他

すべて 国際共同研究 (1件) 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件) 学会発表 (3件) (うち招待講演 2件)

  • [国際共同研究] Duquesne University/Washington and Jefferson College(米国)

    • 関連する報告書
      2023 実施状況報告書
  • [雑誌論文] Schurian‐finiteness of blocks of type $A$ Hecke algebras2023

    • 著者名/発表者名
      Ariki Susumu、Lyle Sinead、Speyer Liron
    • 雑誌名

      Journal of the London Mathematical Society

      巻: 108 号: 6 ページ: 2333-2376

    • DOI

      10.1112/jlms.12808

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Schurian-infinite blocks of type A Hecke algebras2024

    • 著者名/発表者名
      Liron Speyer
    • 学会等名
      Algebra seminar, University of Sydney
    • 関連する報告書
      2023 実施状況報告書
    • 招待講演
  • [学会発表] Graded decomposition matrices for type C KLR algebras2024

    • 著者名/発表者名
      Liron Speyer
    • 学会等名
      Mathematical Society of Japan Spring Meeting 2024
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Graded decomposition matrices for type C KLR algebras2023

    • 著者名/発表者名
      Liron Speyer
    • 学会等名
      LMS Regional workshop on Lie theory, University of York
    • 関連する報告書
      2023 実施状況報告書
    • 招待講演

URL: 

公開日: 2023-04-13   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi