• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Toward applications of the crystalline mean curvature flow

研究課題

研究課題/領域番号 23K03212
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分12040:応用数学および統計数学関連
研究機関金沢大学

研究代表者

POZAR Norbert  金沢大学, 数物科学系, 准教授 (00646523)

研究期間 (年度) 2023-04-01 – 2026-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
2,730千円 (直接経費: 2,100千円、間接経費: 630千円)
2025年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2024年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2023年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
キーワードcrystalline curvature / adaptive mesh refinement / free boundary / mesh refinement / numerical method / viscosity solution
研究開始時の研究の概要

The goal of this project is to bring the crystalline mean curvature flow closer to its applicability to real-world modeling, in particular by developing an efficient numerical method in three dimensions. This flow appears in models of the growth of small crystals, formation of snow crystals, and other phase transitions, as well as in methods in image processing. Since a large number of materials are crystalline (for example metals and semiconductors), the understanding and accurate modeling of crystal growth has direct benefits to development of new materials and manufacturing processes.

研究実績の概要

As this is the first year of the project, the work on the main proposed research, efficient numerical method for the crystalline mean curvature flow, is still ongoing.
In a related work, we investigated a model of droplet motion on a surface with contact line hysteresis: the advancing and receding contact angles differ. The evolution of the contact line of the droplet is driven by a boundary condition on a time scale that is assumed to be much slower than the time required for the droplet shape to reach equilibrium. Therefore the evolution is quasistatic and rate-independent. The theory of the solutions is mathematically challenging. We investigated the existence and uniqueness of a few different notions of solutions and showed that they give equivalent evolution if there are no jumps in the contact line evolution. A numerical method was developed to illustrate the evolution. The paper has been submitted.
The cause of the contact angle hysteresis is still not completely understood. One hypothesis is that it arises from microscopic scale inhomogeneity of the droplet contact angle. If the inhomogeity is periodic, it appears to result in a droplet dynamics with anisotropic contact angle. We submitted a paper on the comparison principle of a simplified model of a stationary droplet (Bernoulli problem) with anisotropic contact angle.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

In the first of year of the project, we continued building the required code for solving crystalline mean curvature flow and related free boundary problems using adaptive mesh refinement on quadtrees and octrees. This code is now being tested on relatively simpler free boundary problems like Hele-Shaw and Stefan problems (models of phase transitions) and droplet evolution, and fluid problems like the shallow water equations. The octree code for three dimensional computation has been implemented and successfully applied to the Stefan problem.
A paper on the application to the Stefan problem (efficiently estimating average velocity of phase transition in an inhomogeneous medium) is under preparation with a Ph.D. student.
We are also working with another Ph.D. student on the application for the shallow water equation.

今後の研究の推進方策

The project is progressing mostly as planned. We are at the stage where the main steps for the adaptive mesh refinement are mostly implemented in both two and three dimensions. From now on we plan to investigate how to apply it to make the computation of numerical solutions of various important free boundary problems more efficient and accurate, with the focus on the crystalline mean curvature flow. However, the approach can be adapted to other free boundary problems or fluid dynamics problems with sharp transitions and we plan to search for such applications.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (4件)

すべて 2024 2023 その他

すべて 国際共同研究 (1件) 学会発表 (3件) (うち国際学会 2件、 招待講演 3件)

  • [国際共同研究] University of California, Los Angeles/University of Utah(米国)

    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Level set method for the crystalline mean curvature flow with forcing2024

    • 著者名/発表者名
      Norbert Pozar
    • 学会等名
      Algorithmy 2024, Slovakia
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Forcing and volume constraint in the crystalline mean curvature flow2023

    • 著者名/発表者名
      Norbert Pozar
    • 学会等名
      Seminar on Partial Differential Equations, Czech Academy of Sciences (Prague)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] A rate-independent model of droplet evolution2023

    • 著者名/発表者名
      Norbert Pozar
    • 学会等名
      非線形解析セミナー, Keio University
    • 関連する報告書
      2023 実施状況報告書
    • 招待講演

URL: 

公開日: 2023-04-13   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi