研究課題/領域番号 |
23K03401
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分15010:素粒子、原子核、宇宙線および宇宙物理に関連する理論
|
研究機関 | 大学共同利用機関法人高エネルギー加速器研究機構 |
研究代表者 |
溝口 俊弥 大学共同利用機関法人高エネルギー加速器研究機構, 素粒子原子核研究所, 講師 (00222323)
|
研究期間 (年度) |
2023-04-01 – 2026-03-31
|
研究課題ステータス |
交付 (2023年度)
|
配分額 *注記 |
4,680千円 (直接経費: 3,600千円、間接経費: 1,080千円)
2025年度: 1,820千円 (直接経費: 1,400千円、間接経費: 420千円)
2024年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2023年度: 1,690千円 (直接経費: 1,300千円、間接経費: 390千円)
|
キーワード | 超弦理論 / 特異点 / 大統一理論 / 素粒子の統一模型 |
研究開始時の研究の概要 |
超弦理論の時空に生じる特異点は、超弦による素粒子や初期宇宙の模型構築を目指す様々な局面において、これまで重要な役割を果たしてきた。本研究では、内部空間内での結合定数が場所ごとに変化する非摂動超弦理論=F 理論における、物質生成に伴い生じるコニフォールド特異点の1次元的連なりが多重交差するE7ならびにE8 ポイントでの特異点の幾何学的数理構造を詳細に解析し、Lμ-Lτゲージ対称性を含む「『大』大統一理論」のような新しい素粒子大統一の考えを超弦で実現し、素粒子の世代構造を説明する可能性について探究する。また、素粒子の大統一と初期宇宙モデルを単一の枠組みで同時に実現する新しい理論の構築を目指す。
|
研究実績の概要 |
Matter from multiple enhancements in F-theory: F理論とは、その期待値が結合定数となるようなタイプIIB超弦の複素スカラー場 τ の内部空間内での配位を、その τ の値がその「複素構造」の値となるような2次元トーラスの配位によって表す理論で、そのような幾何学的記述により例外ゲージ対称性やスピナー表現に属する物質場など、素粒子の大統一理論に重要な性質が実現できるようになる。 F理論では、タイプIIB弦の 7-ブレインが存在する点上に「生え」たトーラスがつぶれており、ブレインが広がる方向に特異点が内部空間内(複素)余次元1で連なる。そこからゲージ対称性が生まれる。また、2つの7-ブレインが交差するとそこでは特異点の特異性が上がり、特異性を表す群HからGに上がるときちょうど対称空間G/(H×U(1))と同じ物質場が現れる。したがって、特異性がSU(5)からE7に拡大するような状況を考えれば、E7/(SU(5)×U(1)3)模型が実現すると期待され、素粒子の3世代統一模型の新しい実現に道を拓く。ところが、SU(5)からE7のようにランクが3以上拡大するような特異点構造はこれまでほとんど調べられてこなかった。 この論文では SU(5)ゲージ対称性を持つ6次元F理論において、特異性がSU(5)からE6、E7、ならびにE8 に拡大するような特異点の構造について詳しく調べた。その結果 (1)重なり合う一般的な余次元2の特異点の数がある限界に達するまで、通常の特異点解消後にさらにコニフォールド特異点が残り、一般には例外曲線の数は期待される荷電超多重体の出現を説明するには十分ではない (2)重なり合う一般的な共次元2の特異点の数がある値を超えると、コニフォールド特異点とは異なる「悪い」特異点が現れ、超対称性が破れることがわかった。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
これまでに6次元のSU(5)モデルの多重特異点の構造の解析を終え、今後いよいよ4次元F理論における多重特異点の構造解析を行うための準備が完了したため。
|
今後の研究の推進方策 |
「4次元F理論の多重ランク拡大点の幾何学的構造と素粒子の大統一理論」 ①特異点近傍に生成する無質量場のスペクトラムの決定 (1) 4次元F理論の無質量場は、特異点解消により生じる例外曲線の交差形式ばかりでなく、「G-フラックス」と呼ばれる内部空間のテンソル磁場にも依存する。物質曲線が滑らかな通常の場合には、物質曲線上のG-フラックスの積分が「世代数」を与えることが指数定理によって帰結されるが、物質曲線が特異になる場合は未知の領域なので調べて明らかにする。(2)例外曲線の交差を求めるには、ブローアップによる直接方法と代数幾何的方法の2種類の方法がある。これらによって交差形式を決定し、G-フラックスがどう影響するかと合わせて特異点近傍に生成する無質量場のスペクトラムを決定する。 ②特異点近傍時空の計量構造 (1)F理論のファイバー方向を含めた空間の一部がコニフォールドになったときの超重力解を決定する。M理論で対応する運動方程式を解いた後、小ファイバー極限をとる。今の場合には特異点が「変形」ではなく「解消」されているので、よく知られたクレバノフ-ストラスラー(KS)型のスロート時空にはならず、解消コニフォールド時空となる。そこでもKSスロートのような階層性が実現するか、超重力解を具体的に構成する。(2)コニフォールド特異点の連続線の交点近傍の幾何学は解析的に解くのが困難であると予想されるので、その場合には数値的に解く。最終的にはE7あるいはE8ポイントでの連続線の多重交差近傍の計量を決定し、その性質を調べる。(3)ワープスロートの長さは現象論/宇宙論的応用に大変重要な役割を果たす。コニフォールド特異点を生じるファイバー型によってフラックス依存性がどう変わるか調べる。
|