研究課題/領域番号 |
23K03525
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分17040:固体地球科学関連
|
研究機関 | 東京工業大学 |
研究代表者 |
ハーンルンド ジョン 東京工業大学, 地球生命研究所, 教授 (30723712)
|
研究期間 (年度) |
2023-04-01 – 2028-03-31
|
研究課題ステータス |
交付 (2023年度)
|
配分額 *注記 |
4,810千円 (直接経費: 3,700千円、間接経費: 1,110千円)
2027年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2026年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2025年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2024年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2023年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
|
キーワード | Mantle Convection / Layered Convection / Lubrication Theory / Earth's Core / Earth's Mantle / Geodynamics / Multi-Scale Physics / Numerical Modeling |
研究開始時の研究の概要 |
Code development, testing, debugging, teaching students, preliminary results, re-assess strategy based on results, move on to detailed doctoral projects, present results and publish papers.
|
研究実績の概要 |
We performed 2D numerical simulations of mantle convection with a dense layer in to compare with predictions of lubrication theory. We tested the influence of simple shear stresses to support and shape dense layer morphology, and found that simple shear has no influence on chemical layer morphology, only normal stresses are important. This is a significant first result, and we can use it to build new scaling relations for the general case.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
The results obtained thus far are important, however, it is only a small part of the larger project. I have 4 masters students at the moment, so their progress is gradual, but this will improve as they gain experience. They are working with me on multiple aspects of the problem, and we aim to construct an entire ecosystem of models based on multi-scale physics.
|
今後の研究の推進方策 |
Our key results so far have been obtained on the mantle side, however, another key aspect of this problem is the outermost core. I have a masters student working on large scale dynamo models to understand the background flow and state of the core under the influence of layering and lateral flux variations. He is presently working on 1D models that are closely analogous to the physics of the upper mixed layer of surface ocean dynamics. We aim to using our hybrid multi-scale approach to understand the evolution of the system while leveraging the advantages of each technique.
|