研究課題/領域番号 |
23K03706
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分19020:熱工学関連
|
研究機関 | 東北大学 |
研究代表者 |
グエン・ヴァン トゥアン 東北大学, 工学研究科, 准教授 (30795117)
|
研究期間 (年度) |
2023-04-01 – 2028-03-31
|
研究課題ステータス |
交付 (2023年度)
|
配分額 *注記 |
4,680千円 (直接経費: 3,600千円、間接経費: 1,080千円)
2027年度: 780千円 (直接経費: 600千円、間接経費: 180千円)
2026年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2025年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2024年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2023年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
|
キーワード | IoT sensing sysems / Energy harvesting / Phase change materials / Energy Harvesting / Thermal fluctuation / IoT sensing system |
研究開始時の研究の概要 |
This research aims to create a novel field that converts the indoor ambient thermal variations into electrical energy.
|
研究実績の概要 |
This research aims to create a novel field that converts the indoor ambient thermal variations into electrical energy. The core technology (thermoelectric generator (TEG)) and basic technology (phase change material (PCM)) are combined to convert the indoor ambient temperature fluctuations into usable electricity as a power source for wireless IoT sensing system. The temperature difference of 0.1oC to 1.0oC is always available (anytime and everywhere) due to temperature changes (between day and night) or air convections (wind, humidity,…), biological heat (people walk near the system) across the TEG by employing PCM which is converted into electricity as an electrical power source for wireless IoT systems. The success of the proposal would open a new scenario of “free from energy” for IoT sensing systems. It means that the energy can be harvested at anytime and anywhere from the ambient temperature fluctuations which can accumulate and store for sensing system.
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
I'm currently focused on improving thermoelectric materials and refining the fabrication process of thermoelectric generators. I have successfully developed high-performance n-type thermoelectric materials using Bi2Te3 as a base. Our efforts are now directed towards optimizing the p-type thermoelectric material.
|
今後の研究の推進方策 |
I plan to develop high-performance p-type thermoelectric materials using an electrodeposition method. Through doping ions or embedding nanoparticles into the composite, we anticipate enhancing performance by leveraging the phonon-scattering effect. Additionally, I will utilize micro-fabrication technologies to fabricate micro-thermoelectric generators.
|