• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Creation of the Universal Descriptor of the Adsorbates Interaction on Heterogenous Catalysts by DOS Decomposition Approach and Machine Learning

研究課題

研究課題/領域番号 23K04890
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分36010:無機物質および無機材料化学関連
研究機関広島大学

研究代表者

RiveraRocabado DavidSamuel  広島大学, 先進理工系科学研究科(工), 特任助教 (00865298)

研究期間 (年度) 2023-04-01 – 2026-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
4,550千円 (直接経費: 3,500千円、間接経費: 1,050千円)
2025年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2024年度: 260千円 (直接経費: 200千円、間接経費: 60千円)
2023年度: 3,640千円 (直接経費: 2,800千円、間接経費: 840千円)
キーワードESDA / Density of states / DFT method / Machine learning / Support effect / Heterogeneous catalysis / DOS decomposition / Universal Descriptor / Heterogenous Catalysts / DFT calculations
研究開始時の研究の概要

Without a detailed understanding of the electronic states of the catalysts’ active sites and the orbitals of the adsorbates involved in the interaction/reaction, it is unlikely to improve the existing catalysts, explore new possible catalytic materials, and design superior catalysts. Thus, this proposal aims to develop and apply my new concept, the electronic structure decomposition approach (ESDA), to explains the nature of the chemical bond between an adsorbate and a catalyst and that can be used to explore the materials' space to discover new and more functionalized catalysts.

研究実績の概要

Over the last year, my research has focused on introducing and promoting the efficacy of the Electronic Structure Decomposition Approach (ESDA).
-Conference Presentations: ESDA has been promoted via presentations at local and international conferences, where it was praised as ingenious by peers.
-Publications: I published a paper: “Predicting CO Interaction and Activation on Inhomogeneous Ru Nanoparticles Using Density Functional Theory Calculations and Machine Learning Models” in the Journal of Physical Chemistry C, a highly reputable journal.
Additionally, I have finished writing a new paper, soon to be submitted to ACS Nano, exploring ESDA's capabilities and applications.
-Research Impact: ESDA is being tested for various systems involving different catalyst materials and adsorbates.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

A lot of effort and time are being dedicated to making this research great.
Several peers have accepted the ESDA and have called the approach "genius."
I am currently writing a second paper to be submitted to a high-impact journal.
Lastly, the ESDA is being expanded to confirm its universality for different catalytic systems by changing the catalyst and the adsorbate.

今後の研究の推進方策

The methodology of this research is being expanded and applied to various systems consisting of different catalysts and adsorbates.
We are focusing on the universal application of ESDA.
Challenges encountered include optimizing the methodology for diverse systems and integrating more complex machine learning algorithms.
To address these, we will collaborate with experts in related fields and acquire updated computational resources to enhance our analysis capabilities.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (7件)

すべて 2023

すべて 雑誌論文 (1件) (うち国際共著 1件、 査読あり 1件、 オープンアクセス 1件) 学会発表 (6件) (うち国際学会 5件、 招待講演 4件)

  • [雑誌論文] Predicting CO Interaction and Activation on Inhomogeneous Ru Nanoparticles Using Density Functional Theory Calculations and Machine Learning Models2023

    • 著者名/発表者名
      Rivera Rocabado David S.、Aizawa Mika、Ishimoto Takayoshi
    • 雑誌名

      The Journal of Physical Chemistry C

      巻: 127 号: 47 ページ: 23010-23022

    • DOI

      10.1021/acs.jpcc.3c04218

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Decomposition and Prediction of Adsorbates Binding Energy on Metal Nanoparticles via Density Functional Theory Calculations and Machine Learning Models2023

    • 著者名/発表者名
      David S. Rivera Rocabado
    • 学会等名
      The 11th Annual World Congress of Nano-S&T
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Unlocking the Secrets of CO Interaction and Activation on Ru Nanoparticles Supported on Al2O3 through Density Functional Theory Calculations and Machine Learning2023

    • 著者名/発表者名
      David S. Rivera Rocabado, Mika Aizawa, Takayoshi Ishimoto
    • 学会等名
      American Chemical Society, Fall Meeting 2023
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Discovery of New Materials by Quantum Calculations and Artificial Intelligence2023

    • 著者名/発表者名
      David S. Rivera Rocabado
    • 学会等名
      10th International Congress on Industrial and Applied Mathematics
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Unlocking the Secrets of CO Interaction and Activation on Ru Nanoparticles Supported on Al2O3: Harnessing the Predictive Power of the Electronic Structure Decomposition Approach2023

    • 著者名/発表者名
      David S. Rivera Rocabado, Mika Aizawa, Takayoshi Ishimoto
    • 学会等名
      5th Conference of Theory and Applications of Computational Chemistry
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Predicting CO Interaction and Activation on Inhomogeneous Ru Nanoparticles using Density Functional Theory Calculations and Machine Learning Models2023

    • 著者名/発表者名
      David S. Rivera Rocabado
    • 学会等名
      Symposium of Theoretical Design of Materials: First-Principles Calculations and Machine Learning
    • 関連する報告書
      2023 実施状況報告書
    • 招待講演
  • [学会発表] Universal Predictive Power: Introducing the Electronic Structure Decomposition Approach for CO Adsorption and Activation on Inhomogeneous Ru Nanoparticles2023

    • 著者名/発表者名
      David S. Rivera Rocabado
    • 学会等名
      International Conference on Catalysis, Chemical Science and Technology 2023
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演

URL: 

公開日: 2023-04-13   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi