研究課題/領域番号 |
23K08795
|
研究種目 |
基盤研究(C)
|
配分区分 | 基金 |
応募区分 | 一般 |
審査区分 |
小区分56040:産婦人科学関連
|
研究機関 | 名古屋大学 |
研究代表者 |
池田 芳紀 名古屋大学, 医学部附属病院, 病院講師 (30820378)
|
研究分担者 |
小泉 憲裕 電気通信大学, 大学院情報理工学研究科, 准教授 (10396765)
|
研究期間 (年度) |
2023-04-01 – 2026-03-31
|
研究課題ステータス |
交付 (2023年度)
|
配分額 *注記 |
4,550千円 (直接経費: 3,500千円、間接経費: 1,050千円)
2025年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2024年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2023年度: 1,820千円 (直接経費: 1,400千円、間接経費: 420千円)
|
キーワード | 医療技能のデジタル化 / 人工知能 / 卵巣腫瘍 / 早期発見 / 死亡率低下 |
研究開始時の研究の概要 |
本研究の目的は、医療技能のデジタル化(医デジ化)により卵巣腫瘍の革新的診断システムを開発することである。卵巣腫瘍の確定診断は手術以外には困難である。病歴、腫瘍マーカー、超音波検査、MRI、CT等の情報から、手術前に卵巣腫瘍の良・悪性や病理組織型を医師が勘や経験に基づき推定している。本研究で構築するのは、人工知能(AI)技術を用いてこの医師の技能をデジタルに再現し、術後に確定した病理組織型の情報から学習を積むことによって、人間を超える高い精度で卵巣腫瘍の良・悪性、病理組織型を術前に診断するシステムである。卵巣悪性腫瘍の早期発見手法として研究を発展させ、最終的には卵巣悪性腫瘍の死亡率低下を目指す。
|