• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Multi-Resolution Curriculum Learning Guided Convolutional Neural Networks for Automatic Segmentation of iPS Cell Colonies

研究課題

研究課題/領域番号 23K11170
研究種目

基盤研究(C)

配分区分基金
応募区分一般
審査区分 小区分61010:知覚情報処理関連
研究機関広島大学

研究代表者

RAYTCHEV BISSER・ROUMENOV  広島大学, 先進理工系科学研究科(工), 准教授 (00531922)

研究期間 (年度) 2023-04-01 – 2026-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
4,420千円 (直接経費: 3,400千円、間接経費: 1,020千円)
2025年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2024年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2023年度: 1,690千円 (直接経費: 1,300千円、間接経費: 390千円)
キーワードdeep learning / automatic image analysis / uncertainty / neural networks / image analysis / reliable AI
研究開始時の研究の概要

In this research project novel deep learning based machine learning methods will be investigated for automatic bio-medical image analysis, which can work reliably in critical settings where safety is first priority.

研究実績の概要

In recent years deep neural networks have achieved SOTA(state-of-the-art) performance on many automatic image analysis tasks, even surpassing human-level performance in certain cases. However, they still perform less than satisfactory when test data differs significantly from the data with which they have been trained with (and especially in cases where the training data sets are small). This is particularly important in bio-medical images, where over-confidence in the predictions can lead to life-threatening situations and in images obtained when studying physics-related phenomena, which differ significantly from the natural images used to train the current SOTA deep learning methods.

During the 1st year of the project we have experimented with using Bayesian neural networks to quantify the uncertainty and a baby-step curriculums learning method which mimics how people learn starting from easy data and gradually moving to difficult one. In order to obtain a more objective evaluation of the efficacy of the proposed methods we have decided to use more difficult data: e.g. skin lesions data which is widely used for many medical challenge competitions for medical images, and images of bag-breakup-related fluid phenomena for more general scientific images. In the latter case, we developed a novel algorithm which utilizes information from several consecutive frames and significantly improves accuracy of detection (even compared with present SOTA algorithms) by eliminating false positives which are difficult to discriminate from a single image even for human experts.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The initial plan was to investigate novel machine learning methods (like for example curriculum learning based methods for quantifying and reducing the uncertainty in the automatic analysis of bio-medical images (one concrete example being images of iPS cell colonies, with which we had done some pioneer work before) in order to contribute to the design of more reliable automatic image analysis systems which can work reliably in the presence of uncertainty, especially in cases where it is difficult to obtain a huge number of training images. Obtained experimental results during the first year of the project have shown that better results can be obtained by not limiting our attention to curriculum learning, but for example combining it with novel data augmentation methods (for bio-medical images), or using temporal information from several consecutive frames (in the case of general images of physical phenomena like bag-breakups).

今後の研究の推進方策

During the next stage of the project we plan to continue the development of novel deep learning methods for improving the accuracy and reducing the uncertainty in the automatic analysis of both general and bio-medical images, thus endeavoring to contribute to the development of more reliable and trustworthy AI-based systems. We plan to continue our effort for developing a curriculum learning method combined with novel data augmentation methods in the context of bio-medical images and additionally to experiment with some other types of data where uncertainty can lead to life-threatening situations, like for example with data obtained from the cameras of self-driving vehicles.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (10件)

すべて 2024 2023 その他

すべて 国際共同研究 (1件) 雑誌論文 (4件) (うち国際共著 2件、 査読あり 4件、 オープンアクセス 3件) 学会発表 (5件) (うち国際学会 2件)

  • [国際共同研究] University of Pisa(イタリア)

    • 関連する報告書
      2023 実施状況報告書
  • [雑誌論文] Fast detection of bag-breakups in pulsating and steady airflow using video analysis and deep learning2023

    • 著者名/発表者名
      Morita Daiki、Raytchev Bisser、Elhanashi Abdussalam、Kawaguchi Mikimasa、Ogata Yoichi、Higaki Toru、Kaneda Kazufumi、Nakashima Akira、Saponara Sergio
    • 雑誌名

      Journal of Real-Time Image Processing

      巻: 20 号: 6

    • DOI

      10.1007/s11554-023-01363-y

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] An integrated and real-time social distancing, mask detection, and facial temperature video measurement system for pandemic monitoring2023

    • 著者名/発表者名
      Elhanashi Abdussalam、Saponara Sergio、Dini Pierpaolo、Zheng Qinghe、Morita Daiki、Raytchev Bisser
    • 雑誌名

      Journal of Real-Time Image Processing

      巻: 20 号: 5

    • DOI

      10.1007/s11554-023-01353-0

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Spectral Super-Resolution for High Dynamic Range Images2023

    • 著者名/発表者名
      Mikamoto Yuki、Kaminaka Yoshiki、Higaki Toru、Raytchev Bisser、Kaneda Kazufumi
    • 雑誌名

      Journal of Imaging

      巻: 9 号: 4 ページ: 83-83

    • DOI

      10.3390/jimaging9040083

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] 表面粗さを考慮した薄膜干渉のスペクトラルレンダリング2023

    • 著者名/発表者名
      上中喜生, 檜垣徹, Bisser Raytchev, 金田和文
    • 雑誌名

      画像電子学会誌

      巻: 52-4 ページ: 507-515

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり
  • [学会発表] Real-Time Intuitive Interaction and Realistic Illumination for CT Volume Rendering2024

    • 著者名/発表者名
      Kousuke Katayama, Toru Higaki, Kazufumi Kaneda, Bisser Raytchev, Wataru Fukumoto
    • 学会等名
      The 8th IIEEJ International Conference on Image Electronics and Visual Computing (IEVC 2024). National Cheng Kung University, Tainan City, Taiwan.
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Efficient and Accurate Physically Based Rendering of Periodic Multilayer Structures with Iridescence2023

    • 著者名/発表者名
      Yoshiki Kaminaka, Toru Higaki, Bisser Raytchev, Kazufumi Kaneda
    • 学会等名
      Proc. SIGGRAPH Asia 2023 Posters
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] 流体シミュレーションにおける深層学習モデル適用の検討2023

    • 著者名/発表者名
      黒川幸将,山脇香菜,Bisser Raytchev,野村典文,尾形陽一,川口幹祐,上村匠,檜垣徹,金田和文
    • 学会等名
      第26回 画像の認識・理解シンポジウム (MIRU2023)
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Transformerを用いたマルチタスク学習による流体解析の時間効率改善に関する研究2023

    • 著者名/発表者名
      笹口翔,Bisser Raytchev,川口幹祐,植木義治,小林謙太,和田好隆,上村匠,佐藤圭峰,檜垣徹,金田和文
    • 学会等名
      第26回 画像の認識・理解シンポジウム (MIRU2023)
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] 機械学習を用いた冷媒回路のサロゲートモデル化に関する研究2023

    • 著者名/発表者名
      中直斗,Bisser Raytchev,笹口翔伍,上村匠,川口幹祐,佐藤圭峰,植木義治,小林謙太,和田好隆,檜垣徹,金田和文
    • 学会等名
      第26回 画像の認識・理解シンポジウム (MIRU2023)
    • 関連する報告書
      2023 実施状況報告書

URL: 

公開日: 2023-04-13   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi