• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Towards Efficient Code Review: Automatic Recommendation of Needed Information

研究課題

研究課題/領域番号 23K16864
研究種目

若手研究

配分区分基金
審査区分 小区分60050:ソフトウェア関連
研究機関九州大学

研究代表者

王 棟  九州大学, システム情報科学研究院, 助教 (30965075)

研究期間 (年度) 2023-04-01 – 2025-03-31
研究課題ステータス 中途終了 (2023年度)
配分額 *注記
4,550千円 (直接経費: 3,500千円、間接経費: 1,050千円)
2025年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2024年度: 1,430千円 (直接経費: 1,100千円、間接経費: 330千円)
2023年度: 1,690千円 (直接経費: 1,300千円、間接経費: 390千円)
キーワードCode Review / Information Need / Software Engineering / Information Needs / Repository Mining
研究開始時の研究の概要

To meet the developers’ information needs and facilitate an effective code review, the applicant proposes a framework of an intelligent and non-intrusive notification mechanism to automatically recommend developers the needed information seamlessly that they should be aware of instantly and dynamically during the code review process.

研究実績の概要

In FY2023, I established the research environment and began mining information from social coding platforms such as GitHub and OpenStack. As part of this, I have been investigating developers' activities across various development channels, including code review channels, GitHub Discussion and GitHub Issue. We have now collected data from over 10 million GitHub repositories and are ready for the next stage. Here is a summary of achieved publications.

-Information need of continuous integration. I have worked with international collaborators on an empirical study to understand the software waste resulting from the misuse of recheck command on continuous integration failures.
-Information spread across various channels. Specifically, I conducted a study investigating developer activities on GitHub Discussion. The results suggested that, in addition to issues, many code reviews were mentioned or converted in the GitHub Discussion.
-Other developer activities. Meanwhile, I focus on the developer communication through issues (i.e., use of visuals to report bugs) and code comments (i.e., self-admitted technique debt)

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

So far, I have collected a large amount of data from open-source software ecosystems. This has resulted in several publications in top international journals and conferences.

These publications better complements the gap lying in information needs by developers during the code review process (such as continuous integration information, cross-channel knowledge).

Large language models have demonstrated impressive performance in a variety of recommendation tasks. This could further prove the feasible of the automated information recommendation and accelerate research progress.

今後の研究の推進方策

The next step is to further mine the developers' information needs from other communication channels, particular issues, in order to establish a relationship between code review and issues. Inspired by the state-of-the-art Retrieval-Augmented Generation(RAG) technology, I plan to construct a high-quality knowledge graph that is specifically devised for the code review activities, based on the information/knowledge across various communications. The knowledge graph would be the premise for employing large language models to fulfill the automation of information recommendation for code reviews.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (6件)

すべて 2024 2023

すべて 雑誌論文 (6件) (うち国際共著 4件、 査読あり 6件、 オープンアクセス 3件)

  • [雑誌論文] Quantifying and characterizing clones of self-admitted technical debt in build systems2024

    • 著者名/発表者名
      Xiao Tao、Zeng Zhili、Wang Dong、Hata Hideaki、McIntosh Shane、Matsumoto Kenichi
    • 雑誌名

      Empirical Software Engineering

      巻: 29 号: 2 ページ: 1-31

    • DOI

      10.1007/s10664-024-10449-5

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Exploring the Effect of Multiple Natural Languages on Code Suggestion Using GitHub Copilot2024

    • 著者名/発表者名
      Koyanagi Kei 、Wang Dong、Noguchi Kotaro 、Kondo Masanari、Serebrenik Alexander、Kamei Yasutaka、Ubayashi Naoyasu
    • 雑誌名

      IEEE/ACM International Conference on Mining Software Repositories (MSR)

      巻: -

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] More than React: Investigating the Role of Emoji Reaction in GitHub Pull Requests2023

    • 著者名/発表者名
      Wang Dong、Xiao Tao、Son Teyon、Kula Raula Gaikovina、Ishio Takashi、Kamei Yasutaka、Matsumoto Kenichi
    • 雑誌名

      Empirical Software Engineering

      巻: 28 号: 5

    • DOI

      10.1007/s10664-023-10336-5

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり
  • [雑誌論文] When Conversations Turn Into Work: A Taxonomy of Converted Discussions and Issues in GitHub2023

    • 著者名/発表者名
      Dong Wang, Masanari Kondo, Yasutaka Kamei, Raula Gaikovina Kula, Naoyasu Ubayashi
    • 雑誌名

      Empirical Software Engineering Journal

      巻: 28 号: 6 ページ: 1-30

    • DOI

      10.1007/s10664-023-10366-z

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Repeated Builds During Code Review: An Empirical Study of the OpenStack Community2023

    • 著者名/発表者名
      Maipradit Rungroj、Wang Dong、Thongtanunam Patanamon、Kula Raula Gaikovina、Kamei Yasutaka、McIntosh Shane
    • 雑誌名

      Proc. of the IEEE/ACM International Conference on Automated Software Engineering (ASE)

      巻: 1 ページ: 153-165

    • DOI

      10.1109/ase56229.2023.00030

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Exploring the Magnetic or Sticky Nature of GitHub Ecosystems: NPM, PyPI, and RubyGems2023

    • 著者名/発表者名
      Sun Shurong 、Nourry Olivier 、Wang Dong 、Kamei Yasutaka
    • 雑誌名

      研究報告ソフトウェア工学(SE)

      巻: 2023-SE-214 ページ: 1-6

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり

URL: 

公開日: 2023-04-13   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi