• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

信号時相論理の細粒度モニタリング及び物理情報システム品質保証への応用

研究課題

研究課題/領域番号 23K16865
研究種目

若手研究

配分区分基金
審査区分 小区分60050:ソフトウェア関連
研究機関九州大学

研究代表者

張 振亜  九州大学, システム情報科学研究院, 助教 (10971228)

研究期間 (年度) 2023-04-01 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
3,250千円 (直接経費: 2,500千円、間接経費: 750千円)
2024年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
2023年度: 2,210千円 (直接経費: 1,700千円、間接経費: 510千円)
キーワードMonitoring / Signal Temporal Logic / Cyber-physical systems / Formal methods / Testing / Cyber Physical Systems / Runtime verification / Quality assurance
研究開始時の研究の概要

Cyber-Physical Systems are safety-critical and their quality assurance is important. First, we refine the semantics of Signal Temporal Logic such that it delivers more information about system evolution. Moreover, we apply the refined semantics to develop more effective quality assurance techniques.

研究実績の概要

The project is going smoothly with a number of scientific research outcomes. There are 8 research papers published or accepted, and there are also a number of papers under submission to international conferences or journals.
First, we published a work in CAV’23 (CORE A*, top-most conference), in which we propose causation monitoring, that can report more information about system evolution than existing monitors. This work builds the theoretical foundation of this project, namely, fine-grained monitoring of Signal Temporal Logic that aims to deliver more information. Based on this work, we do several related applications of signal monitoring, including testing of autonomous driving systems (ISSRE’23, CORE A), object tracking (PR’23, CORE A*), repair of DNN controllers (GECCO’24, CORE A), model checking with complex STL specifications (CAV’24 CORE A*), testing of unmanned aerial vehicles (SBFT’24) etc.
Our ongoing works involve several applications of our fine-grained monitoring technique in different directions. One line is the fault localization and repair of AI-enabled CPS, which requires our causation monitor to provide useful information. Another line is the use of our new semantics in optimal control synthesis, and specifically, we are exploring its application in reinforcement learning for CPS.
We continue our contribution to the ARCH friendly competition, and we co-author the report of falsification tool competition published in ARCH’24.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

The project is going smoothly with a number of scientific research outcomes. We have papers accepted or published in top international conferences or journals, including conferences such as CAV (CORE A*), ISSRE (CORE A), GECCO (CORE A).
By these research outcomes, we have established the theoretical foundation of our project, and now we are moving to the applications of our novel monitoring techniques and STL semantics. Moreover, recently we also come up with an implementation of our causation monitor that is much more efficient than the direct implementation from definition, which allows the application of our causation semantics.
Some of our ongoing works have got preliminary or complete results and are under submission. For instance, our fault localization work extends the classic spectrum-based fault localization in traditional software analysis by leveraging the information provided by our monitoring techniques. We believe these research outcomes will be recognized by the research community.
We also actively participated competitions in community. Notably, we participated in the SBFT'24 tool competition, UAV testing track. Our tool named TUMB wins the 2nd rank among 8 participants, which signifies the effectiveness of our approach.

今後の研究の推進方策

Our ongoing works involve several applications of our fine-grained monitoring technique in different directions.
One line is the fault localization and repair of AI-enabled CPS, which requires our causation monitor to provide useful information. In this research, we extend the spectrum-based fault localization framework to CPS, and our monitoring technique helps in diagnosing faulty intervals during system execution. With this information, we can reduce the potentially suspicious space of fault localization significantly, thereby improving the precision of fault localization.
With results from fault localization, we can perform repair to CPS components. Our preliminary research has been accepted by GECCO'24 (CORE A). We plan to extend this research to explore more effective repair approaches.
Another line is the use of our new semantics in optimal control synthesis, and specifically, we are exploring its application in reinforcement learning for CPS. Preliminary experiments have shown the superiority of our causation semantics over the classic robust semantics of STL in characterizing the states of execution traces. By this, we can devise better reward functions to assist reinforcement learning for optimal control policies.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (15件)

すべて 2024 2023

すべて 雑誌論文 (8件) (うち国際共著 6件、 オープンアクセス 4件、 査読あり 7件) 学会発表 (7件) (うち国際学会 5件、 招待講演 1件)

  • [雑誌論文] On the effectiveness of graph data augmentation for source code learning2024

    • 著者名/発表者名
      Dong Zeming、Hu Qiang、Zhang Zhenya、Zhao Jianjun
    • 雑誌名

      Knowledge-Based Systems

      巻: 285 ページ: 111328-111328

    • DOI

      10.1016/j.knosys.2023.111328

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] Search-Based Repair of DNN Controllers of AI-Enabled Cyber-Physical Systems Guided by System-Level Specifications2024

    • 著者名/発表者名
      Lyu Deyun、 Zhang Zhenya、Arcaini Paolo、 Ishikawa Fuyuki、Laurent Thomas、Zhao Jianjun
    • 雑誌名

      The Genetic and Evolutionary Computation Conference (GECCO 2024)

      巻: -

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Optimization-Based Model Checking for Complex STL Specifications2024

    • 著者名/発表者名
      Sato Sota、An Jie、Zhang Zhenya、Hasuo Ichiro
    • 雑誌名

      36th International Conference on Computer-Aided Verification. (CAV 2024)

      巻: -

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり
  • [雑誌論文] TUMB at the SBFT 2024 Tool Competition - CPS-UAV Test Case Generation Track2024

    • 著者名/発表者名
      Tang Shuncheng、Zhang Zhenya、Cetinkaya Ahmet、Arcaini Paolo
    • 雑誌名

      The 17th International Workshop on Search-Based and Fuzz Testing

      巻: -

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] ARCH-COMP23 Category Report: Falsification2023

    • 著者名/発表者名
      Menghi Claudio、Arcaini Paolo、Baptista Walstan、Ernst Gidon、Fainekos Georgios、Formica Federico、Gon Sauvik、Khandait Tanmay、Kundu Atanu、Pedrielli Giulia、Peltom?ki Jarkko、Porres Ivan、Ray Rajarshi、Waga Masaki、Zhang Zhenya
    • 雑誌名

      EPiC Series in Computing

      巻: 96 ページ: 151-169

    • DOI

      10.29007/6nqs

    • 関連する報告書
      2023 実施状況報告書
    • オープンアクセス / 国際共著
  • [雑誌論文] Online Causation Monitoring of Signal Temporal Logic2023

    • 著者名/発表者名
      Zhang Zhenya、An Jie、Arcaini Paolo、Hasuo Ichiro
    • 雑誌名

      35th International Conference on Computer-Aided Verification. (CAV 2023)

      巻: 13964 ページ: 62-84

    • DOI

      10.1007/978-3-031-37706-8_4

    • ISBN
      9783031377051, 9783031377068
    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] TAT: Targeted backdoor attacks against visual object tracking2023

    • 著者名/発表者名
      Cheng Ziyi、Wu Baoyuan、Zhang Zhenya、Zhao Jianjun
    • 雑誌名

      Pattern Recognition

      巻: 142 ページ: 109629-109629

    • DOI

      10.1016/j.patcog.2023.109629

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [雑誌論文] EvoScenario: Integrating Road Structures into Critical Scenario Generation for Autonomous Driving System Testing2023

    • 著者名/発表者名
      Tang Shuncheng、Zhang Zhenya、Zhou Jixiang、Zhou Yuan、Li Yan-Fu、Xue Yinxing
    • 雑誌名

      2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)

      巻: - ページ: 309-320

    • DOI

      10.1109/issre59848.2023.00054

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [学会発表] Search-Based Repair of DNN Controllers of AI-Enabled Cyber-Physical Systems Guided by System-Level Specifications2024

    • 著者名/発表者名
      Deyun Lyu
    • 学会等名
      The Genetic and Evolutionary Computation Conference (GECCO 2024)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Optimization-Based Model Checking for Complex STL Specifications2024

    • 著者名/発表者名
      Sota Sato
    • 学会等名
      36th International Conference on Computer-Aided Verification. (CAV 2024)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] TUMB at the SBFT 2024 Tool Competition - CPS-UAV Test Case Generation Track2024

    • 著者名/発表者名
      Paolo Arcaini
    • 学会等名
      The 17th International Workshop on Search-Based and Fuzz Testing
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Online Causation Monitoring of Signal Temporal Logic2023

    • 著者名/発表者名
      Zhenya Zhang
    • 学会等名
      35th International Conference on Computer-Aided Verification. (CAV 2023)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] EvoScenario: Integrating Road Structures into Critical Scenario Generation for Autonomous Driving System Testing2023

    • 著者名/発表者名
      Shuncheng Tang
    • 学会等名
      2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Online Causation Monitoring of Signal Temporal Logic2023

    • 著者名/発表者名
      Jie An
    • 学会等名
      日本ソフトウェア科学会第40回大会
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] Falsification of AI-Enabled Hybrid Systems2023

    • 著者名/発表者名
      Zhenya Zhang
    • 学会等名
      Shonan meeting No. 204 DevOps for CPS
    • 関連する報告書
      2023 実施状況報告書
    • 招待講演

URL: 

公開日: 2023-04-13   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi